class MultibandMelganGenerator(MelganGenerator):
    def __init__(
            self,
            in_channels=80,
            out_channels=4,
            proj_kernel=7,
            base_channels=384,
            upsample_factors=(2, 8, 2, 2),
            res_kernel=3,
            num_res_blocks=3,
    ):
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            proj_kernel=proj_kernel,
            base_channels=base_channels,
            upsample_factors=upsample_factors,
            res_kernel=res_kernel,
            num_res_blocks=num_res_blocks,
        )
        self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)

    def pqmf_analysis(self, x):
        return self.pqmf_layer.analysis(x)

    def pqmf_synthesis(self, x):
        return self.pqmf_layer.synthesis(x)

    @torch.no_grad()
    def inference(self, cond_features):
        cond_features = cond_features.to(self.layers[1].weight.device)
        cond_features = torch.nn.functional.pad(
            cond_features, (self.inference_padding, self.inference_padding),
            "replicate")
        return self.pqmf_synthesis(self.layers(cond_features))
Ejemplo n.º 2
0
def test_pqmf():
    w, sr = load(WAV_FILE)

    layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)
    w, sr = load(WAV_FILE)
    w2 = torch.from_numpy(w[None, None, :])
    b2 = layer.analysis(w2)
    w2_ = layer.synthesis(b2)

    print(w2_.max())
    print(w2_.min())
    print(w2_.mean())
    sf.write('pqmf_output.wav', w2_.flatten().detach(), sr)
Ejemplo n.º 3
0
 def __init__(self,
              in_channels=80,
              out_channels=4,
              proj_kernel=7,
              base_channels=384,
              upsample_factors=(2, 8, 2, 2),
              res_kernel=3,
              num_res_blocks=3):
     super(MultibandMelganGenerator,
           self).__init__(in_channels=in_channels,
                          out_channels=out_channels,
                          proj_kernel=proj_kernel,
                          base_channels=base_channels,
                          upsample_factors=upsample_factors,
                          res_kernel=res_kernel,
                          num_res_blocks=num_res_blocks)
     self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)