def procesar(self, file, type): if type == 1: comentarios = [] obj = Reader(file, 1) for i in obj.read(): for j in i: proc = TextCleaner(j[0]) value = [proc.get_processed_comment(), j[2]] if value[0] != "None!": comentarios.append(value) return comentarios else: obj = Reader(file, 4) comentarios = [] for i in obj.read(): proc = TextCleaner(i[0]) value = [proc.get_processed_comment(), i[1]] if value[0] != "None!": comentarios.append(value) return comentarios
y_true = [] y_predicted = [] for i in sentences: obj = Unsupervised(i[0]) result = obj.classify() y_true.append(i[1]) y_predicted.append(result) print i[0] + " " + i[1] + " " + result print classification_report(y_true, y_predicted) if __name__ == "__main__": obj = Manager() reader = Reader("Corpus/edu.xml", 5) sentences = reader.read() obj.test_only_sentiments(sentences) # obj.trainClassifiers(corpusTrain1, 1) # obj.trainClassifiers(corpusTrain2, 1) # obj.trainClassifiers(corpusFinal, 1) # Para entrenar los clasificadores España # obj.trainClassifiers(corpusPeruvianTrain, 2) # Para entrenar de Peru # pruebas """ actores = {} actores["Barcelona"] = 3 actores["Madrid"] = 65