class TestMainClassifier(TestCase):
    def setUp(self):
        self.main_classifier = TieredLayeredNeuralNetwork(feature_count)

    def test_activate(self):
        self.fail()

    def test_fit(self):
        self.main_classifier.fit(X, y, 'test main classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 2)

    def test_fit_unequal_width(self):
        self.main_classifier.fit(X, y, 'test main classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 2)
        new_X = np.random.randn(samples_count,42)
        self.main_classifier.fit(X, y, 'unequal width classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 3)




    def test_predict(self):
        self.fail()

    def test_find_label_position(self):
        self.fail()

    def test_score(self):
        self.fail()

    def test_status(self):
        self.fail()
Ejemplo n.º 2
0
class TestMainClassifier(TestCase):
    def setUp(self):
        self.main_classifier = TieredLayeredNeuralNetwork(feature_count)

    def test_activate(self):
        self.fail()

    def test_fit(self):
        self.main_classifier.fit(X, y, 'test main classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 2)

    def test_fit_unequal_width(self):
        self.main_classifier.fit(X, y, 'test main classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 2)
        new_X = np.random.randn(samples_count, 42)
        self.main_classifier.fit(X, y, 'unequal width classifier')
        self.assertEqual(len(self.main_classifier.get_labels_list()), 3)

    def test_predict(self):
        self.fail()

    def test_find_label_position(self):
        self.fail()

    def test_score(self):
        self.fail()

    def test_status(self):
        self.fail()
 def setUp(self):
     self.main_classifier = TieredLayeredNeuralNetwork(feature_count)
Ejemplo n.º 4
0
 def setUp(self):
     self.main_classifier = TieredLayeredNeuralNetwork(feature_count)