Ejemplo n.º 1
1
class GraphicsCircleTest(object):
    def __init__(self):
        self.graphics = Graphics(matrix_width, matrix_height)
        self.radius = 0
        self.direction = 1
        self.color = RED

    def generate(self):
        # clear the drawing surface
        self.graphics.fill(BLACK)
        # put a circle on our surface
        self.graphics.drawCircle(matrix_width / 2, matrix_height / 2,
                                 self.radius, self.color)

        # circle grows and shrinks based on direction.
        if self.direction:
            self.radius += 1
        else:
            self.radius -= 1

        # if the circle is to big or to small inverse growth direction.
        if self.radius >= (matrix_height / 2) or self.radius <= 0:
            self.direction = not self.direction

        # get the surface drawn
        return self.graphics.getSurface()
Ejemplo n.º 2
0
class VisualizerCircle(object):
    def __init__(self):
        self.graphics = Graphics(matrix_width, matrix_height)
        self.graphics.fill(BLUE)
        self.color = BLUE
        
        self.timer = Timer(0)
        
        self.chunk = 1024
        self.scale = 55
        self.exponent = 2
        self.samplerate = 44100	
        self.audio_params = (pyaudio.paInt16, 1, self.samplerate, True, self.chunk)
        self.p = pyaudio.PyAudio()
        self.stream = self.p.open(format=self.audio_params[0],
                                  channels=self.audio_params[1],
                                  rate=self.audio_params[2],
                                  input=self.audio_params[3],
                                  frames_per_buffer=self.audio_params[4])
        self.data = self.stream.read(self.chunk)

    def calculate_levels(self, data, chunk, samplerate, points=6, maxi=0):
        # Use FFT to calculate volume for each frequency
        MAX=maxi
         
        # Convert raw sound data to Numpy array
        fmt = "%dH"%(len(data)/2)
        data2 = struct.unpack(fmt, data)
        data2 = numpy.array(data2, dtype='h')
         
        # Apply FFT
        fourier = numpy.fft.fft(data2)
        ffty = numpy.abs(fourier[0:len(fourier)/2])/1000
        ffty1=ffty[:len(ffty)/2]
        ffty2=ffty[len(ffty)/2::]+2
        ffty2=ffty2[::-1]
        ffty=ffty1+ffty2
        ffty=numpy.log(ffty)-2
        fourier = list(ffty)[4:-4]
        fourier = fourier[:len(fourier)/2]
        size = len(fourier)
         
        # Add up for 6 lights
        levels = [sum(fourier[i:(i+size/points)]) for i in xrange(0, size, size/points)][:points]
        return levels 

    def getaudio(self):
        try:
            raw = self.stream.read(self.audio_params[5])
        except IOError as e:
            if e[1] != pyaudio.paInputOverflowed:
                raise
            else:
                print("Warning: audio input buffer overflow")
            raw = '\x00' * self.audio_params[5]
        return np.array(np.frombuffer(raw, np.int16), dtype=np.float64)

    def generate(self):
        self.graphics.fill(BLACK)
        if self.stream.get_read_available():
            self.data = self.stream.read(self.chunk)
        levels = self.calculate_levels(self.data, self.chunk, self.samplerate, matrix_height)
        for i, level in enumerate(levels):
            self.color = color_convert(interp_color(level/max(levels)))
            level = max(min(level/self.scale, 1.0), 0.0)
            level = level**self.exponent
            level = int(level*0xff)
            self.graphics.drawCircle(matrix_width/2, matrix_height/2, level, self.color)
        return self.graphics.getSurface()

    def __del__(self):
        print("Closing Stream")
        self.stream.close()
        self.p.terminate()