mkdir(dir2X) sim_coef = 0.9 #endFName = '_P_%.2f_f0_%.2f.npy' %(p1,p2) endFName = '_P_%.2f_G_%.2f.npy' % (p1, p2) fileName = 'patterns' + endFName ############################################################################################' # **Main** if not adressExists(dir2X + fileName): tic() pattsX = data2array(dir1X + fileName, mmap_mode="r+") #.reshape((3300,998)) pattsS = data2array(dir1S + fileName, mmap_mode="r+") #.reshape((3300,998)) patts = pattsX #!!! S = sortBy(patts.mean(1) - patts.mean(), inverse=1)[0] C1, freq = preClustering(patts[S], sim_coef=sim_coef, sim_func=similarity_Euclidean) C2, freq = preClustering(patts[S][C1], freq=freq, sim_coef=sim_coef, sim_func=fPearsonCorrelation) SC, freq = sortBy(freq, inverse=1) array2data(pattsX[S][C1][C2][SC], dir2X + fileName) array2data(pattsS[S][C1][C2][SC], dir2S + fileName) array2data(freq, dir2X + '/tendances' + endFName) tac()
'tauT': 80, 'P': P, 'G': 900., } noise = {'stdD_x': sx, 'stdD_T': sT, 'colors': ['white', 'white']} out = ['x'] other = {'init': 'rand', 'dens': 0.5, 'rperiod': 100, 'dur': '20m'} eva = main.evaCure(evaCon=conn, evaNoi=noise, evaMod=model, out=out, **other) eva.updateTillEnd() TC = eva.out['x'] array2data(TC, dir_TC + '/TC_998_' + name) if not adressExists(dir_FC + '/FC_998_' + name): try: TC = array(TC) except: TC = data2array(dir_TC + '/TC_998_' + name) tic() FC = fPearsonCorrelation(TC) tac('h') array2data(FC, dir_FC + '/FC_998_' + name)