Ejemplo n.º 1
0
 def test_optimizer(self):
     self.assertEqual(GET.optimizer('adam').__class__.__name__, 'Adam')
     self.assertEqual(GET.optimizer('ada_d').__class__.__name__, 'AdaDelta')
     self.assertEqual(GET.optimizer('ada_g').__class__.__name__, 'AdaGrad')
     self.assertEqual(
         GET.optimizer('m_sgd').__class__.__name__, 'MomentumSGD')
     self.assertEqual(
         GET.optimizer('n_ag').__class__.__name__, 'NesterovAG')
     self.assertEqual(GET.optimizer('rmsp').__class__.__name__, 'RMSprop')
     self.assertEqual(
         GET.optimizer('rmsp_g').__class__.__name__, 'RMSpropGraves')
     self.assertEqual(GET.optimizer('sgd').__class__.__name__, 'SGD')
     self.assertEqual(GET.optimizer('smorms').__class__.__name__, 'SMORMS3')
     self.assertEqual(GET.optimizer('test').__class__.__name__, 'Adam')
     self.assertEqual(GET.optimizer('').__class__.__name__, 'Adam')
Ejemplo n.º 2
0
def main(args):

    # 各種データをユニークな名前で保存するために時刻情報を取得する
    exec_time = GET.datetimeSHA()
    # Load dataset
    train, test, n_out = getDataset(args.in_path)
    # モデルを決定する
    actfun = GET.actfun(args.actfun)
    model = L.Classifier(CNT(n_out, args.n_unit, actfun, args.dropout))

    if args.gpu_id >= 0:
        # Make a specified GPU current
        chainer.backends.cuda.get_device_from_id(args.gpu_id).use()
        model.to_gpu()  # Copy the model to the GPU
        chainer.global_config.autotune = True
    # else:
    #     model.to_intel64()

    # Setup an optimizer
    optimizer = GET.optimizer(args.optimizer).setup(model)

    for func_name in model.predictor.base._children:
        for param in model.predictor.base[func_name].params():
            param.update_rule.hyperparam.alpha *= args.alpha

    # Setup iterator
    train_iter = MultiprocessIterator(train, args.batchsize)
    test_iter = MultiprocessIterator(test,
                                     args.batchsize,
                                     repeat=False,
                                     shuffle=False)

    # train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    # test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
    #                                              repeat=False, shuffle=False)

    # Set up a trainer
    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu_id)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'),
                               out=args.out_path)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu_id))

    # Dump a computational graph from 'loss' variable at the first iteration
    # The "main" refers to the target link of the "main" optimizer.
    trainer.extend(
        extensions.dump_graph('main/loss', out_name=exec_time + '_graph.dot'))

    # Take a snapshot for each specified epoch
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(extensions.snapshot(filename=exec_time +
                                       '_{.updater.epoch}.snapshot'),
                   trigger=(frequency, 'epoch'))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(log_name=exec_time + '.log'))
    # trainer.extend(extensions.observe_lr())

    # Save two plot images to the result dir
    if args.plot and extensions.PlotReport.available():
        trainer.extend(
            PlotReportLog(['main/loss', 'validation/main/loss'],
                          'epoch',
                          file_name='loss.png'))

        trainer.extend(
            extensions.PlotReport(
                ['main/accuracy', 'validation/main/accuracy'],
                'epoch',
                file_name='acc.png'))
        # trainer.extend(
        #     PlotReportLog(['lr'],
        #                   'epoch', file_name='lr.png', val_pos=(-80, -60))
        # )

    # Print selected entries of the log to stdout
    # Here "main" refers to the target link of the "main" optimizer again, and
    # "validation" refers to the default name of the Evaluator extension.
    # Entries other than 'epoch' are reported by the Classifier link, called by
    # either the updater or the evaluator.
    trainer.extend(
        extensions.PrintReport([
            'epoch',
            'main/loss',
            'validation/main/loss',
            'main/accuracy',
            'validation/main/accuracy',
            # 'lr',
            'elapsed_time'
        ]))

    # Print a progress bar to stdout
    trainer.extend(extensions.ProgressBar())

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)
        # Set pruning
        # http://tosaka2.hatenablog.com/entry/2017/11/17/194051
        masks = pruning.create_model_mask(model, args.pruning, args.gpu_id)
        trainer.extend(pruning.pruned(model, masks))

    # predict.pyでモデルを決定する際に必要なので記憶しておく
    model_param = F.args2dict(args)
    model_param['shape'] = train[0][0].shape
    model_param['n_out'] = n_out
    if args.only_check is False:
        # predict.pyでモデルのパラメータを読み込むjson形式で保存する
        with open(F.getFilePath(args.out_path, exec_time, '.json'), 'w') as f:
            json.dump(model_param, f, indent=4, sort_keys=True)

    # Run the training
    trainer.run()

    # 最後にモデルを保存する
    # スナップショットを使ってもいいが、
    # スナップショットはファイルサイズが大きいので
    chainer.serializers.save_npz(
        F.getFilePath(args.out_path, exec_time, '.model'), model)
Ejemplo n.º 3
0
def main(args):
    # 各種データをユニークな名前で保存するために時刻情報を取得する
    exec_time = GET.datetimeSHA()

    # Set up a neural network to train
    # Classifier reports softmax cross entropy loss and accuracy at every
    # iteration, which will be used by the PrintReport extension below.

    # 活性化関数を取得する
    actfun1 = GET.actfun(args.actfun1)
    actfun2 = GET.actfun(args.actfun2)
    # モデルを決定する
    if args.network == 0:
        from Lib.network import JC_DDUU as JC
    else:
        from Lib.network2 import JC_UDUD as JC

    model = L.Classifier(
        JC(n_unit=args.unit, layer=args.layer_num, rate=args.shuffle_rate,
           actfun1=actfun1, actfun2=actfun2, dropout=args.dropout,
           view=args.only_check),
        lossfun=GET.lossfun(args.lossfun)
    )
    # Accuracyは今回使用しないのでFalseにする
    # もしも使用したいのであれば、自分でAccuracyを評価する関数を作成する必要あり?
    model.compute_accuracy = False

    # Setup an optimizer
    optimizer = GET.optimizer(args.optimizer).setup(model)

    # Load dataset
    train, test, _ = GET.imgData(args.in_path)
    train = ResizeImgDataset(train, args.shuffle_rate)
    test = ResizeImgDataset(test, args.shuffle_rate)
    # predict.pyでモデルを決定する際に必要なので記憶しておく
    model_param = F.args2dict(args)
    model_param['shape'] = train[0][0].shape

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    test_iter = chainer.iterators.SerialIterator(test, args.batchsize,
                                                 repeat=False, shuffle=False)

    # Set up a trainer
    updater = training.StandardUpdater(
        train_iter, optimizer, device=args.gpu_id
    )
    trainer = training.Trainer(
        updater, (args.epoch, 'epoch'), out=args.out_path
    )

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu_id))

    # Dump a computational graph from 'loss' variable at the first iteration
    # The "main" refers to the target link of the "main" optimizer.
    trainer.extend(
        extensions.dump_graph('main/loss', out_name=exec_time + '_graph.dot')
    )

    # Take a snapshot for each specified epoch
    frequency = args.epoch if args.frequency == -1 else max(1, args.frequency)
    trainer.extend(
        extensions.snapshot(filename=exec_time + '_{.updater.epoch}.snapshot'),
        trigger=(frequency, 'epoch')
    )

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(log_name=exec_time + '.log'))
    # trainer.extend(extensions.observe_lr())

    # Save two plot images to the result dir
    if args.plot and extensions.PlotReport.available():
        trainer.extend(
            PlotReportLog(['main/loss', 'validation/main/loss'],
                          'epoch', file_name='loss.png')
        )

        # trainer.extend(
        #     PlotReportLog(['lr'],
        #                   'epoch', file_name='lr.png', val_pos=(-80, -60))
        # )

    # Print selected entries of the log to stdout
    # Here "main" refers to the target link of the "main" optimizer again, and
    # "validation" refers to the default name of the Evaluator extension.
    # Entries other than 'epoch' are reported by the Classifier link, called by
    # either the updater or the evaluator.
    trainer.extend(extensions.PrintReport([
        'epoch',
        'main/loss',
        'validation/main/loss',
        # 'lr',
        'elapsed_time'
    ]))

    # Print a progress bar to stdout
    trainer.extend(extensions.ProgressBar())

    # Resume from a snapshot
    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)
        # Set pruning
        # http://tosaka2.hatenablog.com/entry/2017/11/17/194051
        masks = pruning.create_model_mask(model, args.pruning, args.gpu_id)
        trainer.extend(pruning.pruned(model, masks))

    # Make a specified GPU current
    if args.gpu_id >= 0:
        chainer.backends.cuda.get_device_from_id(args.gpu_id).use()
        # Copy the model to the GPU
        model.to_gpu()
        chainer.global_config.autotune = True
    else:
        model.to_intel64()

    # predict.pyでモデルのパラメータを読み込むjson形式で保存する
    if args.only_check is False:
        F.dict2json(args.out_path, exec_time + '_train', model_param)

    # Run the training
    trainer.run()

    # 最後にモデルを保存する
    # スナップショットを使ってもいいが、
    # スナップショットはファイルサイズが大きい
    chainer.serializers.save_npz(
        F.getFilePath(args.out_path, exec_time, '.model'),
        model
    )