def classify_XOR(): #Load Dataset P, T, Ptest, Ttest = dts.loadDataset_XOR() input_shape = (P.shape[1], ) output_shape = T.shape[1] # Number of Dense neurons at output layer ### Build Model dendral_neurons = 6 lr = 0.08971484393708822 activation = 'tanh' model = bm.build_HybridModel_MLNN(dendral_neurons, activation, input_shape, output_shape) [hist, train_time] = bm.train_HybridModel_MLNN(model, lr, P, T, Ptest, Ttest, batch_size=512, nb_epoch=100, v_verbose=False) print("\n\t Dataset XOR: ") print("\n\t Classificacion: " + str(hist.history['val_acc'][-1])) plt_util.my_plot_train_loss(hist)
def classify_2C_5L_Spiral(): #Load Dataset P, T, Ptest, Ttest = dts.loadDataset_Espiral_2Class_N_Loops() input_shape = (P.shape[1], ) output_shape = T.shape[1] # Number of Dense neurons at output layer ### Build Model dendral_neurons = 250 lr = 0.2 activation = 'tanh' batch_size = 512 model = bm.build_HybridModel_MLNN(dendral_neurons, activation, input_shape, output_shape) [hist, train_time] = bm.train_HybridModel_MLNN(model, lr, P, T, Ptest, Ttest, batch_size=batch_size, nb_epoch=1000, v_verbose=False) print("\n\t Dataset 2 class 5 Loops spiral : ") print("\n\t Classificacion: " + str(hist.history['val_acc'][-1])) plt_util.my_plot_train_loss(hist) plt_util.plot_decision_boundary_2_class(P, model, batch_size, h=0.05, half_dataset=True, expand=0.5, x_lim=45, y_lim=45)