Ejemplo n.º 1
0
    def prep_resume(self):
        ui = Console_UI()
        resume_prefix = self.get('resume')
        resume_scene = self.get('resume_scene')
        if resume_scene is not None and resume_prefix is None:
            raise ValueError(
                'You must provide resume prefix if you have set a resume scene'
            )

        # for debug mode uncomment:
        # scenario_log_root = "/media/max/SSD_1TB/log/"
        if resume_prefix.lower() == 'last':
            dirs = sorted([
                d for d in iglob(f'{self.scenario_log_root}/*/*/neural_nets')
            ])
            dirs = [
                d for d in dirs
                if len([f for f in iglob(f'{d}/*{resume_scene}.t7')]) > 0
            ]
            if len(dirs) == 0:
                raise Exception(
                    f'No previous runs found in \'{self.scenario_log_root}\' with *{resume_scene}.t7'
                )
            resume_prefix = dirs[-1].lstrip(
                self.scenario_log_root).rstrip('/neural_nets')

            ui.inform_user(f'Resuming run from {resume_prefix}')
        elif resume_prefix is not None:
            resume_prefix = retrieve_dir(path=resume_prefix,
                                         base_path=self.scenario_log_root,
                                         expected_depth=1)
            ui.inform_user(f'Resuming run from {resume_prefix}')

        self.cfgs['resume'] = resume_prefix
        # for debug mode uncomment:
        # self.cfgs['resume'] = "../%s" % self.cfgs['resume']
        if not self.cfgs['skip_tensorboard']:
            dst_tensorboard_path = os.path.join(self.log_folder, 'tensorboard')
            if os.path.exists(dst_tensorboard_path):
                ui.inform_user(
                    f'Removing previous tensorboard catalogue: {dst_tensorboard_path}'
                )
                shutil.rmtree(dst_tensorboard_path)

            ui.inform_user('Copying the previous tensorboard data')
            shutil.copytree(
                src=os.path.join(self.scenario_log_root, resume_prefix,
                                 'tensorboard'),
                dst=dst_tensorboard_path,
            )
Ejemplo n.º 2
0
    def __init__(
        self,
        graph_name,
        experiment_set,
        task_cfgs,
        scene_cfgs,
        scenario_cfgs,
    ):
        self.graph_name = graph_name
        self.task_cfgs = task_cfgs
        self.scene_cfgs = scene_cfgs
        self.scenario_cfgs = scenario_cfgs
        self.experiment_set = experiment_set
        self.experiment_name = self.experiment_set.get_name()

        self.graph_cfgs = self.get_graph_cfgs(self.graph_name)
        self.classification = self.get_cfgs('classification', default=False)
        self.reconstruction = self.get_cfgs('reconstruction', default=False)
        self.identification = self.get_cfgs('identification', default=False)
        self.regression = self.get_cfgs('regression', default=False)
        self.pi_model = self.get_cfgs('pi_model', default=False)
        self.real_fake = self.get_cfgs('real_fake', default=False)
        self.optimizer_type = self.get_cfgs('optimizer_type')

        if not Global_Cfgs().get('silent_init_info'):
            UI = Console_UI()
            UI.inform_user(
                info=[
                    'explicit experiment modalities',
                    list(self.get_experiment_explicit_modalities().keys())
                ],
                debug=self.get_experiment_explicit_modalities(),
            )
            UI.inform_user(
                info=[
                    'implicit experiment modalities',
                    list(self.get_experiment_implicit_modalities().keys())
                ],
                debug=self.get_experiment_implicit_modalities(),
            )
            UI.inform_user(
                info=[
                    'explicit graph modalities',
                    list(self.get_graph_specific_explicit_modalities().keys())
                ],
                debug=self.get_graph_specific_explicit_modalities(),
            )
            UI.inform_user(
                info=[
                    'implicit graph modalities',
                    list(self.get_graph_specific_implicit_modalities().keys())
                ],
                debug=self.get_graph_specific_implicit_modalities(),
            )
            UI.inform_user(
                info=[
                    'explicit models',
                    list(self.get_explicit_models().keys())
                ],
                debug=self.get_explicit_models(),
            )
            UI.inform_user(
                info=[
                    'implicit models',
                    list(self.get_implicit_models().keys())
                ],
                debug=self.get_implicit_models(),
            )
Ejemplo n.º 3
0
    def run_scene(self, start_epoch=0):
        logged_memory_usage = False
        ui = Console_UI()
        ui.overall_total_epochs = self.epochs
        ui.overall_total_repeats = self.repeat

        Global_Cfgs().set_forward_noise(
            self.get_cfgs('forward_noise', default=0))
        for r in range(0, self.repeat):
            ui.overall_repeat = r
            if (self.stochastic_weight_averaging and r > 0):
                self.tasks[self.main_task].stochastic_weight_average()

            for e in range(0, self.epochs):
                ui.overall_epoch = e
                if start_epoch > e + r * self.epochs:
                    Scene.iteration_counter += self.epoch_size
                else:
                    for task in self.tasks.values():
                        task.update_learning_rate(self.get_learning_rate(e))

                    for _ in range(self.epoch_size):
                        for key, task in self.tasks.items():
                            if self.should_task_run(task_name=key, task=task):
                                task.step(
                                    iteration_counter=Scene.iteration_counter,
                                    scene_name=self.scene_name)
                        Scene.iteration_counter += 1

                        if logged_memory_usage is False:
                            for key in self.tasks.keys():
                                task = self.tasks[key]
                                memory_usage = task.get_memory_usage_profile()
                                File_Manager().write_usage_profile(
                                    scene_name=self.scene_name,
                                    task=key,
                                    memory_usage=memory_usage,
                                )
                                ui.inform_user(
                                    f'\n Memory usage for {self.scene_name}::{key}\n'
                                )
                                ui.inform_user(memory_usage)
                            logged_memory_usage = True

                    for task in self.tasks.values():
                        task.save(scene_name='last')
                        # Not really helping with just emptying cache - we need to add something more
                        # removing as this may be the cause for errors
                        # torch.cuda.empty_cache()
        ui.reset_overall()

        # Note that the evaluation happens after this step and therefore averaging may hur the performance
        if self.stochastic_weight_averaging_last:
            self.tasks[self.main_task].stochastic_weight_average()
            for task in self.tasks.values():
                task.save(scene_name='last')

        for task in self.tasks.values():
            task.validate(iteration_counter=Scene.iteration_counter,
                          scene_name=self.scene_name)
            task.test(iteration_counter=Scene.iteration_counter,
                      scene_name=self.scene_name)

        # Save all tasks before enterering the next scene
        for task in self.tasks.values():
            task.save(scene_name=self.scene_name)
            [g.dropModelNetworks() for g in task.graphs.values()]