Ejemplo n.º 1
0
def image_corrosion(img_src, img_dst):
    src = read_img(img_src)
    ## b.设置卷积核5*5
    kernel = np.ones((5, 5), np.uint8)
    ## c.图像的腐蚀,默认迭代次数
    erosion = cv2.erode(src, kernel)
    #腐蚀后,图像明显变黑很多
    cv2.imwrite(img_dst, erosion)
def image_sharpen(img_src, img_dst):
    """

    :param img_src:传入图片的路径
    :param img_dst:模糊化后图片的路径
    :return:
    """
    image = read_img(img_src)
    kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], np.float32)  # 锐化
    dst = cv2.filter2D(image, -1, kernel=kernel)  #滤波器
    cv2.imwrite(img_dst, dst)
def gray_scale(img_src_path, img_dst_path):
    """
    :param img_src_path:图片的源路径
    :param img_dst_path:灰度化的图片路径
    :return:img_dst_path
    """
    img = read_img(img_src_path)
    gray = cv2.cvtColor(
        img, cv2.COLOR_BGR2GRAY)  #RGB颜色空间以R(Red:红)、G(Green:绿)、B(Blue:蓝)
    cv2.imwrite(img_dst_path, gray)
    return img_dst_path
Ejemplo n.º 4
0
def image_dilate(img_src, img_dst):
    #膨胀类似与 '领域扩张' ,将图像的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大
    src = read_img(img_src)
    ## 设置卷积核5*5
    kernel = np.ones((5, 5), np.uint8)
    ## 图像的腐蚀,默认迭代次数
    erosion = cv2.erode(src, kernel)
    ## 图像的膨胀
    dst = cv2.dilate(erosion,
                     kernel)  #在图像上进行从左到右,从上到下的平移,如果方框中存在白色,那么这个方框内所有的颜色都是白色
    cv2.imwrite(img_dst, dst)
def image_blur(img_src, img_dst):
    """

    :param img_src:传入图片的路径
    :param img_dst:模糊化后图片的路径
    :return:
    """
    src = read_img(img_src)
    dst = cv2.blur(src, (15, 1))  #均值滤波
    # cv2.imshow("blur_demo", dst)
    cv2.imwrite(img_dst, dst)
def binary_local_threshold(img_src,img_dst):
    """

     :param img_src:传入图片的路径
     :param img_dst:模糊化后图片的路径
     :return:
     """
    src = read_img(img_src)
    gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)  #把输入图像灰度化
    #自适应阈值化能够根据图像不同区域亮度分布,改变阈值
    binary =  cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 25, 10)
    # cv2.namedWindow("binary1", cv2.WINDOW_NORMAL)
    # cv2.imshow("binary1", binary)
    cv2.imwrite(img_dst, binary)
        output)
    return output


def gasuss_noise(image, mean=0, var=0.001):
    '''
        添加高斯噪声
        mean : 均值
        var : 方差
    '''
    image = np.array(image / 255, dtype=float)
    noise = np.random.normal(mean, var**0.5, image.shape)
    out = image + noise
    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.
    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out * 255)
    cv2.imwrite(
        "D:/pythonProject/ImageRecognitionAndClassification/UnitTest/ImgReco/small_tool_6.png",
        out)
    return out


img_path = "D:/pythonProject/ImageRecognitionAndClassification/UnitTest/ImgReco/small_tool_2.png"

#gasuss_noise(image=read_img(img_path))

sp_noise(image=read_img(img_path), prob=0.1)