Ejemplo n.º 1
0
def doWindfieldPlotting(configFile):
    """
    Plot the wind field on a map.

    :param str configFile: Path to the configuration file.

    :Note: the file name is assumed to be 'gust.interp.nc'

    """
    from netCDF4 import Dataset
    import numpy as np
    config = ConfigParser()
    config.read(configFile)
    outputPath = config.get('Output', 'Path')
    windfieldPath = pjoin(outputPath, 'windfield')

    inputFile = config.get('DataProcess', 'InputFile')
    if inputFile.endswith(".nc"):
        # We have a netcdf track file. Work under the assumption it is
        # drawn directly from TCRM.
        trackFile = os.path.basename(inputFile)
        trackId = trackFile.split('.')[1]
        gustFile = 'gust.{0}.nc'.format(trackId)
        outputWindFile = pjoin(windfieldPath, gustFile)
    else:
        # Note the assumption about the file name!
        outputWindFile = pjoin(windfieldPath, 'gust.001-00001.nc')
    plotPath = pjoin(outputPath, 'plots', 'maxwind.png')

    f = Dataset(outputWindFile, 'r')

    xdata = f.variables['lon'][:]
    ydata = f.variables['lat'][:]

    vdata = f.variables['vmax'][:]

    gridLimit = None
    if config.has_option('Region', 'gridLimit'):
        gridLimit = config.geteval('Region', 'gridLimit')
        ii = np.where((xdata >= gridLimit['xMin'])
                      & (xdata <= gridLimit['xMax']))
        jj = np.where((ydata >= gridLimit['yMin'])
                      & (ydata <= gridLimit['yMax']))
        [xgrid, ygrid] = np.meshgrid(xdata[ii], ydata[jj])
        ig, jg = np.meshgrid(ii, jj)
        vdata = vdata[jg, ig]
    else:
        [xgrid, ygrid] = np.meshgrid(xdata, ydata)
    map_kwargs = dict(llcrnrlon=xgrid.min(),
                      llcrnrlat=ygrid.min(),
                      urcrnrlon=xgrid.max(),
                      urcrnrlat=ygrid.max(),
                      projection='merc',
                      resolution='i')
    title = "Maximum wind speed"
    cbarlabel = "Wind speed ({0})".format(f.variables['vmax'].units)
    levels = np.arange(30, 101., 5.)
    saveWindfieldMap(vdata, xgrid, ygrid, title, levels, cbarlabel, map_kwargs,
                     plotPath)
Ejemplo n.º 2
0
    def __init__(self, configFile):

        config = ConfigParser()
        config.read(configFile)

        # Check for wind multiplier file path in config file
        if config.has_option('Input', 'RawMultipliers'):
            self.WMPath = config.get('Input', 'RawMultipliers')
            log.info('Using multiplier files from {0}'.format(self.WMPath))
        else:
            log.info(
                'Using default multiplier files from /g/data/fj6/multipliers/')
            self.WMPath = '/g/data/fj6/multipliers/'
Ejemplo n.º 3
0
def doWindfieldPlotting(configFile):
    """
    Plot the wind field on a map.

    :param str configFile: Path to the configuration file.
    
    :Note: the file name is assumed to be 'gust.interp.nc'

    """
    from netCDF4 import Dataset
    import numpy as np
    config = ConfigParser()
    config.read(configFile)

    outputPath = config.get('Output', 'Path')
    windfieldPath = pjoin(outputPath, 'windfield')

    # Note the assumption about the file name!
    outputWindFile = pjoin(windfieldPath, 'gust.interp.nc')
    plotPath = pjoin(outputPath, 'plots', 'maxwind.png')

    f = Dataset(outputWindFile, 'r')

    xdata = f.variables['lon'][:]
    ydata = f.variables['lat'][:]

    vdata = f.variables['vmax'][:]
    
    gridLimit = None
    if config.has_option('Region','gridLimit'):
        gridLimit = config.geteval('Region', 'gridLimit')
        ii = np.where((xdata >= gridLimit['xMin']) &
                      (xdata <= gridLimit['xMax']))
        jj = np.where((ydata >= gridLimit['yMin']) &
                      (ydata <= gridLimit['yMax']))
        [xgrid, ygrid] = np.meshgrid(xdata[ii], ydata[jj])
        ig, jg = np.meshgrid(ii, jj)
        vdata = vdata[jg, ig]
    else:
        [xgrid, ygrid] = np.meshgrid(xdata, ydata)
    map_kwargs = dict(llcrnrlon=xgrid.min(),
                      llcrnrlat=ygrid.min(),
                      urcrnrlon=xgrid.max(),
                      urcrnrlat=ygrid.max(),
                      projection='merc',
                      resolution='i')
    title = "Maximum wind speed"
    cbarlabel = "Wind speed ({0})".format(f.variables['vmax'].units)
    levels = np.arange(30, 101., 5.)
    saveWindfieldMap(vdata, xgrid, ygrid, title, levels, 
                     cbarlabel, map_kwargs, plotPath)
Ejemplo n.º 4
0
def loadDatasets():
    config = ConfigParser()
    datasets = config.get('Input', 'Datasets').split(',')
    
    global DATASETS
    for dataset in datasets:
        url = config.get(dataset, 'URL')
        path = config.get(dataset, 'path')
        if config.has_option(dataset, 'filename'):
            filename = config.get(dataset, 'filename')
        else:
            filename = None
        data = DataSet(dataset, url, path, filename)
        DATASETS.append(data)
Ejemplo n.º 5
0
def copyTranslateMultipliers(configFile, type_mapping, output_path):
    '''  
    Copy wind multipliers from directory specified in the configuration file, to an
    output directory.
    Once the files have been copied, they are translated into Geotiffs

    :param str configFile: Path to configuration file
    :param str type_mapping: dict containing the three wind multiplier inputs
    '''
    config = ConfigParser()
    config.read(configFile)

    # Check for wind multiplier file path in config file
    if config.has_option('Input', 'Multipliers'):
        WMPath = config.get('Input', 'Multipliers')
        log.info('Using multiplier files from %s', WMPath)
    else:
        log.info(
            'Using default multiplier files from /g/data/fj6/multipliers/')
        WMPath = '/g/data/fj6/multipliers/'

    tiles = config.get('Input', 'Tiles')
    tiles = [item.strip() for item in tiles.split(',')]
    log.info('Multipliers will be written out to %s', output_path)
    checkOutputFolders(output_path)

    for tile in tiles:
        for wm in type_mapping:
            var = type_mapping[wm]
            pathn = WMPath + wm + '/'
            log.debug('Copying files from %s', pathn)
            log.debug('Beginning to translate tiles into Geotiff')
            for file in glob.glob(pathn + tile + '*'):
                file_break = file.split('/')
                output = file_break[-1]
                output_name = wm + '/' + output
                copyfile(file, output_path + output_name)
                os.system(
                    'gdal_translate -of GTiff NETCDF:{0}{1}/{2}:{3} {4}{5}.tif'
                    .format(output_path, wm, output, var, output_path,
                            output_name[:-3]))  # -3 to drop '.nc'
                log.debug('%s translated to Geotif', output_name[:-3])
Ejemplo n.º 6
0
def loadDatasets():
    """
    Load the details of the datasets to be downloaded from the
    configuration settings. This updates the :data:`DATASETS`
    list.

    """
    
    config = ConfigParser()
    datasets = config.get('Input', 'Datasets').split(',')
    
    global DATASETS
    for dataset in datasets:
        url = config.get(dataset, 'URL')
        path = config.get(dataset, 'path')
        if config.has_option(dataset, 'filename'):
            filename = config.get(dataset, 'filename')
        else:
            filename = None
        data = DataSet(dataset, url, path, filename)
        DATASETS.append(data)
Ejemplo n.º 7
0
def loadDatasets(configFile):
    """
    Load the details of the datasets to be downloaded from the
    configuration settings. This updates the :data:`DATASETS`
    list.

    """

    config = ConfigParser()
    config.read(configFile)
    datasets = config.get('Input', 'Datasets').split(',')

    global DATASETS
    for dataset in datasets:
        url = config.get(dataset, 'URL')
        path = config.get(dataset, 'path')
        if config.has_option(dataset, 'filename'):
            filename = config.get(dataset, 'filename')
        else:
            filename = None
        data = DataSet(dataset, url, path, filename)
        DATASETS.append(data)
Ejemplo n.º 8
0
    def __init__(self, configFile, auto_calc_grid_limit):
        """
        :type  configFile: string
        :param configFile: Configuration file name

        :type  auto_calc_grid_limit: :class:`dict`
        :param auto_calc_grid_limit: the domain where the frequency will be calculated.
                                     The :class:`dict` should contain the keys
                                     :attr:`xMin`, :attr:`xMax`, :attr:`yMin`
                                     and :attr:`yMax`. The *x*  variable bounds the
                                     longitude and the *y* variable bounds
                                     the latitude.
        """

        config = ConfigParser()
        config.read(configFile)

        if config.has_option('TrackGenerator', 'gridLimit'):
            self.tg_domain = config.geteval('TrackGenerator', 'gridLimit')
        else:
            self.tg_domain = auto_calc_grid_limit

        self.outputPath = config.get('Output', 'Path')
Ejemplo n.º 9
0
    def __init__(self, configFile, auto_calc_grid_limit):
        """
        :type  configFile: string
        :param configFile: Configuration file name

        :type  auto_calc_grid_limit: :class:`dict`
        :param auto_calc_grid_limit: the domain where the frequency will be calculated.
                                     The :class:`dict` should contain the keys 
                                     :attr:`xMin`, :attr:`xMax`, :attr:`yMin` 
                                     and :attr:`yMax`. The *x*  variable bounds the 
                                     longitude and the *y* variable bounds
                                     the latitude.
        """

        config = ConfigParser()
        config.read(configFile)

        if config.has_option('TrackGenerator', 'gridLimit'):
            self.tg_domain = config.geteval('TrackGenerator', 'gridLimit')
        else:
            self.tg_domain = auto_calc_grid_limit
           
        self.outputPath = config.get('Output', 'Path')
Ejemplo n.º 10
0
    def processData(self, restrictToWindfieldDomain=False):
        """
        Process raw data into ASCII files that can be read by the main
        components of the system

        :param bool restrictToWindfieldDomain: if True, only process data
            within the wind field domain, otherwise, process data from
            across the track generation domain.

        """
        config = ConfigParser()
        config.read(self.configFile)

        self.logger.info("Running {0}".format(flModuleName()))

        if config.has_option('DataProcess', 'InputFile'):
            inputFile = config.get('DataProcess', 'InputFile')

        if config.has_option('DataProcess', 'Source'):
            source = config.get('DataProcess', 'Source')
            self.logger.info('Loading %s dataset', source)
            fn = config.get(source, 'filename')
            path = config.get(source, 'path')
            inputFile = pjoin(path, fn)

        # If input file has no path information, default to tcrm input folder
        if len(os.path.dirname(inputFile)) == 0:
            inputFile = pjoin(self.tcrm_input_dir, inputFile)

        self.logger.info("Processing {0}".format(inputFile))

        self.source = config.get('DataProcess', 'Source')

        inputData = colReadCSV(self.configFile, inputFile, self.source)

        inputSpeedUnits = config.get(self.source, 'SpeedUnits')
        inputPressureUnits = config.get(self.source, 'PressureUnits')
        inputLengthUnits = config.get(self.source, 'LengthUnits')
        startSeason = config.getint('DataProcess', 'StartSeason')

        indicator = loadData.getInitialPositions(inputData)
        lat = np.array(inputData['lat'], 'd')
        lon = np.mod(np.array(inputData['lon'], 'd'), 360)

        if restrictToWindfieldDomain:
            # Filter the input arrays to only retain the tracks that
            # pass through the windfield domain.
            CD = CalcTrackDomain(self.configFile)
            self.domain = CD.calcDomainFromTracks(indicator, lon, lat)
            domainIndex = self.extractTracks(indicator, lon, lat)
            inputData = inputData[domainIndex]
            indicator = indicator[domainIndex]
            lon = lon[domainIndex]
            lat = lat[domainIndex]

        if self.progressbar is not None:
            self.progressbar.update(0.125)

        # Sort date/time information
        try:
            dt = np.empty(indicator.size, 'f')
            dt[1:] = np.diff(inputData['age'])
        except (ValueError, KeyError):

            try:
                self.logger.info(("Filtering input data by season:"
                                  "season > {0}".format(startSeason)))
                # Find indicies that satisfy minimum season filter
                idx = np.where(inputData['season'] >= startSeason)[0]
                # Filter records:
                inputData = inputData[idx]
                indicator = indicator[idx]
                lon = lon[idx]
                lat = lat[idx]
            except (ValueError, KeyError):
                pass

            year, month, day, hour, minute, datetimes \
                = loadData.parseDates(inputData, indicator)

            # Time between observations:
            dt = loadData.getTimeDelta(year, month, day, hour, minute)

            # Calculate julian days:
            jdays = loadData.julianDays(year, month, day, hour, minute)

        delta_lon = np.diff(lon)
        delta_lat = np.diff(lat)

        # Split into separate tracks if large jump occurs (delta_lon >
        # 15 degrees or delta_lat > 5 degrees) This avoids two tracks
        # being accidentally combined when seasons and track numbers
        # match but basins are different as occurs in the IBTrACS
        # dataset.  This problem can also be prevented if the
        # 'tcserialno' column is specified.
        indicator[np.where(delta_lon > 15)[0] + 1] = 1
        indicator[np.where(delta_lat > 5)[0] + 1] = 1

        # Save information required for frequency auto-calculation
        try:
            origin_seasonOrYear = np.array(inputData['season'],
                                           'i').compress(indicator)
            header = 'Season'
        except (ValueError, KeyError):
            origin_seasonOrYear = year.compress(indicator)
            header = 'Year'

        flSaveFile(self.origin_year,
                   np.transpose(origin_seasonOrYear),
                   header,
                   ',',
                   fmt='%d')

        pressure = np.array(inputData['pressure'], 'd')
        novalue_index = np.where(pressure == sys.maxint)
        pressure = metutils.convert(pressure, inputPressureUnits, "hPa")
        pressure[novalue_index] = sys.maxint

        # Convert any non-physical central pressure values to maximum integer
        # This is required because IBTrACS has a mix of missing value codes
        # (i.e. -999, 0, 9999) in the same global dataset.
        pressure = np.where((pressure < 600) | (pressure > 1100), sys.maxint,
                            pressure)

        if self.progressbar is not None:
            self.progressbar.update(0.25)

        try:
            vmax = np.array(inputData['vmax'], 'd')
        except (ValueError, KeyError):
            self.logger.warning("No max wind speed data")
            vmax = np.empty(indicator.size, 'f')
        else:
            novalue_index = np.where(vmax == sys.maxint)
            vmax = metutils.convert(vmax, inputSpeedUnits, "mps")
            vmax[novalue_index] = sys.maxint

        assert lat.size == indicator.size
        assert lon.size == indicator.size
        assert pressure.size == indicator.size
        #assert vmax.size == indicator.size

        try:
            rmax = np.array(inputData['rmax'])
            novalue_index = np.where(rmax == sys.maxint)
            rmax = metutils.convert(rmax, inputLengthUnits, "km")
            rmax[novalue_index] = sys.maxint

            self._rmax(rmax, indicator)
            self._rmaxRate(rmax, dt, indicator)
        except (ValueError, KeyError):
            self.logger.warning("No rmax data available")

        if self.ncflag:
            self.data['index'] = indicator

        # ieast : parameter used in latLon2Azi
        # FIXME: should be a config setting describing the input data.
        ieast = 1

        # Determine the index of initial cyclone observations, excluding
        # those cyclones that have only one observation. This is used
        # for calculating initial bearing and speed
        indicator2 = np.where(indicator > 0, 1, 0)
        initIndex = np.concatenate(
            [np.where(np.diff(indicator2) == -1, 1, 0), [0]])

        # Calculate the bearing and distance (km) of every two
        # consecutive records using ll2azi
        bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0)
        assert bear_.size == indicator.size - 1
        assert dist_.size == indicator.size - 1
        bear = np.empty(indicator.size, 'f')
        bear[1:] = bear_
        dist = np.empty(indicator.size, 'f')
        dist[1:] = dist_

        self._lonLat(lon, lat, indicator, initIndex)
        self._bearing(bear, indicator, initIndex)
        self._bearingRate(bear, dt, indicator)
        if self.progressbar is not None:
            self.progressbar.update(0.375)
        self._speed(dist, dt, indicator, initIndex)
        self._speedRate(dist, dt, indicator)
        self._pressure(pressure, indicator)
        self._pressureRate(pressure, dt, indicator)
        self._windSpeed(vmax)

        try:
            self._frequency(year, indicator)
            self._juliandays(jdays, indicator, year)
        except (ValueError, KeyError):
            pass

        self.logger.info("Completed {0}".format(flModuleName()))
        if self.progressbar is not None:
            self.progressbar.update(0.5)
Ejemplo n.º 11
0
    def processData(self, restrictToWindfieldDomain=False):
        """
        Process raw data into ASCII files that can be read by the main
        components of the system

        :param bool restrictToWindfieldDomain: if True, only process data
            within the wind field domain, otherwise, process data from
            across the track generation domain.
            
        """
        config = ConfigParser()
        config.read(self.configFile)

        self.logger.info("Running %s" % flModuleName())

        if config.has_option('DataProcess', 'InputFile'):
            inputFile = config.get('DataProcess', 'InputFile')

        if config.has_option('DataProcess', 'Source'):
            source = config.get('DataProcess', 'Source')
            self.logger.info('Loading %s dataset', source)
            fn = config.get(source, 'filename')
            path = config.get(source, 'path')
            inputFile = pjoin(path, fn)

        # If input file has no path information, default to tcrm input folder
        if len(os.path.dirname(inputFile)) == 0:
            inputFile = pjoin(self.tcrm_input_dir, inputFile)

        self.logger.info("Processing %s" % inputFile)

        self.source = config.get('DataProcess', 'Source')

        inputData = colReadCSV(self.configFile, inputFile, self.source)

        inputSpeedUnits = config.get(self.source, 'SpeedUnits')
        inputPressureUnits = config.get(self.source, 'PressureUnits')
        inputLengthUnits = config.get(self.source, 'LengthUnits')
        startSeason = config.getint('DataProcess', 'StartSeason')

        indicator = loadData.getInitialPositions(inputData)
        lat = np.array(inputData['lat'], 'd')
        lon = np.mod(np.array(inputData['lon'], 'd'), 360)

        if restrictToWindfieldDomain:
            # Filter the input arrays to only retain the tracks that
            # pass through the windfield domain.
            CD = CalcTrackDomain(self.configFile)
            self.domain = CD.calcDomainFromTracks(indicator, lon, lat)
            domainIndex = self.extractTracks(indicator, lon, lat)
            inputData = inputData[domainIndex]
            indicator = indicator[domainIndex]
            lon = lon[domainIndex]
            lat = lat[domainIndex]

        if self.progressbar is not None:
            self.progressbar.update(0.125)

        # Sort date/time information
        try:
            dt = np.empty(indicator.size, 'f')
            dt[1:] = np.diff(inputData['age'])
        except (ValueError, KeyError):

            try:
                self.logger.info("Filtering input data by season: season > %d"%startSeason)
                # Find indicies that satisfy minimum season filter
                idx = np.where(inputData['season'] >= startSeason)[0]
                # Filter records:
                inputData = inputData[idx]
                indicator = indicator[idx]
                lon = lon[idx]
                lat = lat[idx]
            except (ValueError, KeyError):
                pass

            year, month, day, hour, minute, datetimes \
                = loadData.parseDates(inputData, indicator)

            # Time between observations:
            dt = loadData.getTimeDelta(year, month, day, hour, minute)

            # Calculate julian days:
            jdays = loadData.julianDays(year, month, day, hour, minute)

        delta_lon = np.diff(lon)
        delta_lat = np.diff(lat)

        # Split into separate tracks if large jump occurs (delta_lon >
        # 15 degrees or delta_lat > 5 degrees) This avoids two tracks
        # being accidentally combined when seasons and track numbers
        # match but basins are different as occurs in the IBTrACS
        # dataset.  This problem can also be prevented if the
        # 'tcserialno' column is specified.
        indicator[np.where(delta_lon > 15)[0] + 1] = 1
        indicator[np.where(delta_lat > 5)[0] + 1] = 1

        # Save information required for frequency auto-calculation
        try:
            origin_seasonOrYear = np.array(
                inputData['season'], 'i').compress(indicator)
            header = 'Season'
        except (ValueError, KeyError):
            origin_seasonOrYear = year.compress(indicator)
            header = 'Year'

        flSaveFile(self.origin_year, np.transpose(origin_seasonOrYear),
                   header, ',', fmt='%d')

        pressure = np.array(inputData['pressure'], 'd')
        novalue_index = np.where(pressure == sys.maxint)
        pressure = metutils.convert(pressure, inputPressureUnits, "hPa")
        pressure[novalue_index] = sys.maxint

        # Convert any non-physical central pressure values to maximum integer
        # This is required because IBTrACS has a mix of missing value codes
        # (i.e. -999, 0, 9999) in the same global dataset.
        pressure = np.where((pressure < 600) | (pressure > 1100),
                            sys.maxint, pressure)

        if self.progressbar is not None:
            self.progressbar.update(0.25)

        try:
            vmax = np.array(inputData['vmax'], 'd')
        except (ValueError, KeyError):
            self.logger.warning("No max wind speed data")
            vmax = np.empty(indicator.size, 'f')
        else:
            novalue_index = np.where(vmax == sys.maxint)
            vmax = metutils.convert(vmax, inputSpeedUnits, "mps")
            vmax[novalue_index] = sys.maxint

        assert lat.size == indicator.size
        assert lon.size == indicator.size
        assert pressure.size == indicator.size
        #assert vmax.size == indicator.size

        try:
            rmax = np.array(inputData['rmax'])
            novalue_index = np.where(rmax == sys.maxint)
            rmax = metutils.convert(rmax, inputLengthUnits, "km")
            rmax[novalue_index] = sys.maxint

            self._rmax(rmax, indicator)
            self._rmaxRate(rmax, dt, indicator)
        except (ValueError, KeyError):
            self.logger.warning("No rmax data available")

        if self.ncflag:
            self.data['index'] = indicator

        # ieast : parameter used in latLon2Azi
        # FIXME: should be a config setting describing the input data.
        ieast = 1

        # Determine the index of initial cyclone observations, excluding
        # those cyclones that have only one observation. This is used
        # for calculating initial bearing and speed
        indicator2 = np.where(indicator > 0, 1, 0)
        initIndex = np.concatenate([np.where(np.diff(indicator2) ==
                                             -1, 1, 0), [0]])

        # Calculate the bearing and distance (km) of every two
        # consecutive records using ll2azi
        bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0)
        assert bear_.size == indicator.size - 1
        assert dist_.size == indicator.size - 1
        bear = np.empty(indicator.size, 'f')
        bear[1:] = bear_
        dist = np.empty(indicator.size, 'f')
        dist[1:] = dist_

        self._lonLat(lon, lat, indicator, initIndex)
        self._bearing(bear, indicator, initIndex)
        self._bearingRate(bear, dt, indicator)
        if self.progressbar is not None:
            self.progressbar.update(0.375)
        self._speed(dist, dt, indicator, initIndex)
        self._speedRate(dist, dt, indicator)
        self._pressure(pressure, indicator)
        self._pressureRate(pressure, dt, indicator)
        self._windSpeed(vmax)

        try:
            self._frequency(year, indicator)
            self._juliandays(jdays, indicator, year)
        except (ValueError, KeyError):
            pass

        self.logger.info("Completed %s" % flModuleName())
        if self.progressbar is not None:
            self.progressbar.update(0.5)
Ejemplo n.º 12
0
def run(configFile, callback=None):
    """
    Run the wind field calculations.

    :param str configFile: path to a configuration file.
    :param func callback: optional callback function to track progress.

    """

    log.info('Loading wind field calculation settings')

    # Get configuration

    config = ConfigParser()
    config.read(configFile)

    profileType = config.get('WindfieldInterface', 'profileType')
    windFieldType = config.get('WindfieldInterface', 'windFieldType')
    beta = config.getfloat('WindfieldInterface', 'beta')
    beta1 = config.getfloat('WindfieldInterface', 'beta1')
    beta2 = config.getfloat('WindfieldInterface', 'beta2')
    thetaMax = config.getfloat('WindfieldInterface', 'thetaMax')
    margin = config.getfloat('WindfieldInterface', 'Margin')
    resolution = config.getfloat('WindfieldInterface', 'Resolution')
    domain = config.get('WindfieldInterface', 'Domain')

    outputPath = config.get('Output', 'Path')
    windfieldPath = pjoin(outputPath, 'windfield')
    trackPath = pjoin(outputPath, 'tracks')

    gridLimit = None
    if config.has_option('Region', 'gridLimit'):
        gridLimit = config.geteval('Region', 'gridLimit')

    if config.has_option('WindfieldInterface', 'gridLimit'):
        gridLimit = config.geteval('WindfieldInterface', 'gridLimit')

    if config.getboolean('Timeseries', 'Extract', fallback=False):
        from Utilities.timeseries import Timeseries
        ts = Timeseries(configFile)
        timestepCallback = ts.extract
    else:
        timestepCallback = None

    multipliers = None
    if config.has_option('Input', 'Multipliers'):
        multipliers = config.get('Input', 'Multipliers')

    thetaMax = math.radians(thetaMax)

    # Attempt to start the track generator in parallel
    global MPI
    MPI = attemptParallel()
    comm = MPI.COMM_WORLD

    log.info('Running windfield generator')

    wfg = WindfieldGenerator(config=config,
                             margin=margin,
                             resolution=resolution,
                             profileType=profileType,
                             windFieldType=windFieldType,
                             beta=beta,
                             beta1=beta1,
                             beta2=beta2,
                             thetaMax=thetaMax,
                             gridLimit=gridLimit,
                             domain=domain,
                             multipliers=multipliers,
                             windfieldPath=windfieldPath)

    log.info(f'Dumping gusts to {windfieldPath}')

    # Get the trackfile names and count

    files = os.listdir(trackPath)
    trackfiles = [pjoin(trackPath, f) for f in files if f.startswith('tracks')]
    nfiles = len(trackfiles)

    log.info('Processing {0} track files in {1}'.format(nfiles, trackPath))

    # Do the work

    comm.barrier()

    wfg.dumpGustsFromTrackfiles(trackfiles, windfieldPath, timestepCallback)
    try:
        ts.shutdown()
    except NameError:

        pass

    comm.barrier()

    log.info('Completed windfield generator')
Ejemplo n.º 13
0
def run(configFile, callback=None):
    """
    Run the wind field calculations.

    :param str configFile: path to a configuration file.
    :param func callback: optional callback function to track progress.

    """

    log.info('Loading wind field calculation settings')

    # Get configuration

    config = ConfigParser()
    config.read(configFile)

    profileType = config.get('WindfieldInterface', 'profileType')
    windFieldType = config.get('WindfieldInterface', 'windFieldType')
    beta = config.getfloat('WindfieldInterface', 'beta')
    beta1 = config.getfloat('WindfieldInterface', 'beta1')
    beta2 = config.getfloat('WindfieldInterface', 'beta2')
    thetaMax = config.getfloat('WindfieldInterface', 'thetaMax')
    margin = config.getfloat('WindfieldInterface', 'Margin')
    resolution = config.getfloat('WindfieldInterface', 'Resolution')
    domain = config.get('WindfieldInterface', 'Domain')

    outputPath = config.get('Output', 'Path')
    windfieldPath = pjoin(outputPath, 'windfield')
    trackPath = pjoin(outputPath, 'tracks')

    gridLimit = None
    if config.has_option('Region', 'gridLimit'):
        gridLimit = config.geteval('Region', 'gridLimit')

    if config.has_option('WindfieldInterface', 'gridLimit'):
        gridLimit = config.geteval('WindfieldInterface', 'gridLimit')

    if config.has_section('Timeseries'):
        if config.has_option('Timeseries', 'Extract'):
            if config.getboolean('Timeseries', 'Extract'):
                from Utilities.timeseries import Timeseries
                log.debug("Timeseries data will be extracted")
                ts = Timeseries(configFile)
                timestepCallback = ts.extract
            else:

                def timestepCallback(*args):
                    """Dummy timestepCallback function"""
                    pass

    else:

        def timestepCallback(*args):
            """Dummy timestepCallback function"""
            pass

    thetaMax = math.radians(thetaMax)

    # Attempt to start the track generator in parallel
    global pp
    pp = attemptParallel()

    log.info('Running windfield generator')

    wfg = WindfieldGenerator(config=config,
                             margin=margin,
                             resolution=resolution,
                             profileType=profileType,
                             windFieldType=windFieldType,
                             beta=beta,
                             beta1=beta1,
                             beta2=beta2,
                             thetaMax=thetaMax,
                             gridLimit=gridLimit,
                             domain=domain)

    msg = 'Dumping gusts to %s' % windfieldPath
    log.info(msg)

    # Get the trackfile names and count

    files = os.listdir(trackPath)
    trackfiles = [pjoin(trackPath, f) for f in files if f.startswith('tracks')]
    nfiles = len(trackfiles)

    def progressCallback(i):
        """Define the callback function"""
        callback(i, nfiles)

    msg = 'Processing %d track files in %s' % (nfiles, trackPath)
    log.info(msg)

    # Do the work

    pp.barrier()

    wfg.dumpGustsFromTrackfiles(trackfiles, windfieldPath, timestepCallback)

    try:
        ts.shutdown()
    except NameError:
        pass

    pp.barrier()

    log.info('Completed windfield generator')
Ejemplo n.º 14
0
def run(configFile, callback=None):
    """
    Run the wind field calculations.

    :param str configFile: path to a configuration file.
    :param func callback: optional callback function to track progress.

    """

    log.info('Loading wind field calculation settings')

    # Get configuration

    config = ConfigParser()
    config.read(configFile)

    outputPath = config.get('Output', 'Path')
    profileType = config.get('WindfieldInterface', 'profileType')
    windFieldType = config.get('WindfieldInterface', 'windFieldType')
    beta = config.getfloat('WindfieldInterface', 'beta')
    beta1 = config.getfloat('WindfieldInterface', 'beta1')
    beta2 = config.getfloat('WindfieldInterface', 'beta2')
    thetaMax = config.getfloat('WindfieldInterface', 'thetaMax')
    margin = config.getfloat('WindfieldInterface', 'Margin')
    resolution = config.getfloat('WindfieldInterface', 'Resolution')
    domain = config.get('WindfieldInterface', 'Domain')

    windfieldPath = pjoin(outputPath, 'windfield')
    trackPath = pjoin(outputPath, 'tracks')
    windfieldFormat = 'gust-%i-%04d.nc'

    gridLimit = None
    if config.has_option('Region','gridLimit'):
        gridLimit = config.geteval('Region', 'gridLimit')

    if config.has_option('WindfieldInterface', 'gridLimit'):
        gridLimit = config.geteval('WindfieldInterface', 'gridLimit')

    if config.has_section('Timeseries'):
        if config.has_option('Timeseries', 'Extract'):
            if config.getboolean('Timeseries', 'Extract'):
                from Utilities.timeseries import Timeseries
                log.debug("Timeseries data will be extracted")
                ts = Timeseries(configFile)
                timestepCallback = ts.extract

    else:
        def timestepCallback(*args):
            """Dummy timestepCallback function"""
            pass

    thetaMax = math.radians(thetaMax)

    # Attempt to start the track generator in parallel
    global pp
    pp = attemptParallel()

    log.info('Running windfield generator')

    wfg = WindfieldGenerator(config=config,
                             margin=margin,
                             resolution=resolution,
                             profileType=profileType,
                             windFieldType=windFieldType,
                             beta=beta,
                             beta1=beta1,
                             beta2=beta2,
                             thetaMax=thetaMax,
                             gridLimit=gridLimit,
                             domain=domain)

    msg = 'Dumping gusts to %s' % windfieldPath
    log.info(msg)

    # Get the trackfile names and count

    files = os.listdir(trackPath)
    trackfiles = [pjoin(trackPath, f) for f in files if f.startswith('tracks')]
    nfiles = len(trackfiles)

    def progressCallback(i):
        """Define the callback function"""
        callback(i, nfiles)

    msg = 'Processing %d track files in %s' % (nfiles, trackPath)
    log.info(msg)

    # Do the work

    pp.barrier()

    wfg.dumpGustsFromTrackfiles(trackfiles, windfieldPath, windfieldFormat,
                                progressCallback, timestepCallback)
    try:
        ts.shutdown()
    except NameError:
        pass

    pp.barrier()

    log.info('Completed windfield generator')