def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
        type=str,
        required=False,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_ss_drawing/',
        type=str,
        required=False,
        help="The output directory where the model checkpoints will be written."
    )
    parser.add_argument(
        "--init_checkpoint",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_ss_drawing/model.pt',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")

    ## Other parameters
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument("--eval_batch_size",
                        default=2000,
                        type=int,
                        help="Total batch size for eval.")

    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    bert_config = BertConfig.from_pretrained('bert-base-uncased', num_labels=2)
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
                                              do_lower_case=args.do_lower_case)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    test_dataset = UbuntuDataset(file_path=os.path.join(
        args.data_dir, "test.txt"),
                                 max_seq_length=args.max_seq_length,
                                 tokenizer=tokenizer)
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=args.eval_batch_size,
        sampler=SequentialSampler(test_dataset),
        num_workers=4)

    model = BertForSequenceClassification.from_pretrained(args.init_checkpoint,
                                                          config=bert_config)
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    logger.info("***** Running testing *****")
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    f = open(os.path.join(args.output_dir, 'logits_test.txt'), 'w')

    model.eval()
    test_loss = 0
    nb_test_steps, nb_test_examples = 0, 0
    for input_ids, input_mask, segment_ids, label_ids in tqdm(test_dataloader,
                                                              desc="Step"):
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)

        with torch.no_grad():
            tmp_test_loss, logits = model(input_ids,
                                          token_type_ids=segment_ids,
                                          attention_mask=input_mask,
                                          labels=label_ids)

        logits = logits.detach().cpu().numpy()
        label_ids = label_ids.to('cpu').numpy()

        for logit, label in zip(logits, label_ids):
            logit = '{},{}'.format(logit[0], logit[1])
            f.write('_\t{}\t{}\n'.format(logit, label))

        test_loss += tmp_test_loss.mean().item()

        nb_test_examples += input_ids.size(0)
        nb_test_steps += 1

    f.close()
    test_loss = test_loss / nb_test_steps
    result = evaluate(os.path.join(args.output_dir, 'logits_test.txt'))
    result.update({'test_loss': test_loss})

    output_eval_file = os.path.join(args.output_dir, "results_test.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Test results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
        type=str,
        required=False,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_ss_drawing/',
        type=str,
        required=False,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--init_model_name",
        default='bert-base-uncased',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--data_augmentation",
                        default=False,
                        action='store_true',
                        help="Whether to use augmentation")
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_test",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument("--train_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=200,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_steps",
        default=0.0,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--weight_decay",
                        default=1e-3,
                        type=float,
                        help="weight_decay")
    parser.add_argument("--save_checkpoints_steps",
                        default=4000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=10,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    bert_config = BertConfig.from_pretrained(args.init_model_name,
                                             num_labels=2)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        if args.do_train:
            raise ValueError(
                "Output directory ({}) already exists and is not empty.".
                format(args.output_dir))
    else:
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.init_model_name,
                                              do_lower_case=args.do_lower_case)
    if args.data_augmentation:
        train_dataset = UbuntuDataset(file_path=os.path.join(
            args.data_dir, "train_augment_3.txt"),
                                      max_seq_length=args.max_seq_length,
                                      tokenizer=tokenizer)
    else:
        train_dataset = UbuntuDataset(file_path=os.path.join(
            args.data_dir, "train.txt"),
                                      max_seq_length=args.max_seq_length,
                                      tokenizer=tokenizer)
    eval_dataset = UbuntuDataset(file_path=os.path.join(
        args.data_dir, "valid.txt"),
                                 max_seq_length=args.max_seq_length,
                                 tokenizer=tokenizer)

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        sampler=RandomSampler(train_dataset),
        num_workers=4)
    eval_dataloader = torch.utils.data.DataLoader(
        eval_dataset,
        batch_size=args.eval_batch_size,
        sampler=SequentialSampler(eval_dataset),
        num_workers=4)

    model = BertForSequenceClassification.from_pretrained(args.init_model_name,
                                                          config=bert_config)
    model.to(device)

    num_train_steps = None
    if args.do_train:
        num_train_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)
        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        # remove pooler, which is not used thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
        scheduler = WarmupLinearSchedule(optimizer,
                                         warmup_steps=args.warmup_steps,
                                         t_total=num_train_steps)
    else:
        optimizer = None
        scheduler = None

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    best_metric = 0.0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                labels=label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()  # We have accumulated enought gradients
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1

                if step % args.save_checkpoints_steps == 0:
                    model.eval()
                    f = open(os.path.join(args.output_dir, 'logits_dev.txt'),
                             'w')
                    eval_loss = 0
                    nb_eval_steps, nb_eval_examples = 0, 0
                    logits_all = []
                    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        segment_ids = segment_ids.to(device)
                        label_ids = label_ids.to(device)

                        with torch.no_grad():
                            tmp_eval_loss, logits = model(
                                input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                labels=label_ids)

                        logits = logits.detach().cpu().numpy()
                        logits_all.append(logits)
                        label_ids = label_ids.cpu().numpy()

                        for logit, label in zip(logits, label_ids):
                            logit = '{},{}'.format(logit[0], logit[1])
                            f.write('_\t{}\t{}\n'.format(logit, label))

                        eval_loss += tmp_eval_loss.mean().item()

                        nb_eval_examples += input_ids.size(0)
                        nb_eval_steps += 1

                    f.close()
                    logits_all = np.concatenate(logits_all, axis=0)
                    eval_loss = eval_loss / nb_eval_steps

                    result = evaluate(
                        os.path.join(args.output_dir, 'logits_dev.txt'))
                    result.update({'eval_loss': eval_loss})

                    output_eval_file = os.path.join(args.output_dir,
                                                    "eval_results_dev.txt")
                    with open(output_eval_file, "a") as writer:
                        logger.info("***** Eval results *****")
                        for key in sorted(result.keys()):
                            logger.info("  %s = %s", key, str(result[key]))
                            writer.write("%s = %s\n" % (key, str(result[key])))

                    ### Save the best checkpoint
                    if best_metric < result['R10@1'] + result['R10@2']:
                        try:  ### Remove 'module' prefix when using DataParallel
                            state_dict = model.module.state_dict()
                        except AttributeError:
                            state_dict = model.state_dict()
                        torch.save(state_dict,
                                   os.path.join(args.output_dir, "model.pt"))
                        best_metric = result['R10@1'] + result['R10@2']
                        logger.info('Saving the best model in {}'.format(
                            os.path.join(args.output_dir, "model.pt")))

                        ### visualize bad cases of the best model
                        logger.info('Saving Bad cases...')
                        visualize_bad_cases(logits=logits_all,
                                            input_file_path=os.path.join(
                                                args.data_dir, 'valid.txt'),
                                            output_file_path=os.path.join(
                                                args.output_dir,
                                                'valid_bad_cases.txt'))

                    model.train()