Ejemplo n.º 1
0
def test_file_full(file):
    split_dataset(file + "_data.csv", file + "_labels.csv",
                  file + "_train.csv", file + "_test.csv", None)
    train_data = LogFile(file + "_train.csv", ",", 0, 1000000, None, "case_id",
                         "name")
    train_data.remove_attributes(["label"])
    model = edbn.train(train_data)

    test_data = LogFile(file + "_test.csv",
                        ",",
                        0,
                        1000000,
                        None,
                        "case_id",
                        "name",
                        values=train_data.values)
    edbn.test(test_data, file + "_output_full.csv", model, "label", "0",
              train_data)

    plot.plot_single_roc_curve(file + "_output_full.csv",
                               file,
                               save_file="../Data/Nolle_Graphs/" +
                               file.split("/")[-1] + "_roc.png")
    plot.plot_single_prec_recall_curve(file + "_output_full.csv",
                                       file,
                                       save_file="../Data/Nolle_Graphs/" +
                                       file.split("/")[-1] + "_precrec.png")
Ejemplo n.º 2
0
def score_continuous_net(model,
                         test,
                         label_attr,
                         output_file=None,
                         title=None):
    import Utils.PlotResults as plot

    ranking = model.test_parallel(test)
    ranking.sort(key=lambda l: l[0].get_total_score())
    scores = []
    y = []
    for r in ranking:
        scores.append((getattr(r[1], "Index"), r[0].get_total_score(),
                       getattr(r[1], label_attr) != 0))
        y.append(r[0].get_total_score())
    print(len(scores))

    if output_file is None:
        output_file = "../output.csv"

    with open(output_file, "w") as fout:
        for s in scores:
            fout.write(",".join([str(i) for i in s]))
            fout.write("\n")

    plot.plot_single_roc_curve(output_file, title)
    plot.plot_single_prec_recall_curve(output_file, title)
Ejemplo n.º 3
0
def test_file_bohmer(file):
    split_dataset(file + "_data.csv", file + "_labels.csv",
                  file + "_train.csv", file + "_test.csv", 10000)

    train_data = LogFile(file + "_train.csv",
                         ",",
                         0,
                         1000000,
                         None,
                         "case_id",
                         "name",
                         convert=False)
    train_data.remove_attributes(["label"])
    model = bohmer.train(train_data, 3, 4, 1)

    test_data = LogFile(file + "_test.csv",
                        ",",
                        0,
                        1000000,
                        None,
                        "case_id",
                        "name",
                        convert=False,
                        values=train_data.values)
    bohmer.test(test_data, file + "_output_bohmer.csv", model, "label", 0)

    plot.plot_single_roc_curve(file + "_output_bohmer.csv",
                               file,
                               save_file="../Data/Nolle_Graphs/" +
                               file.split("/")[-1] + "_roc_bohmer.png")
    plot.plot_single_prec_recall_curve(file + "_output_bohmer.csv",
                                       file,
                                       save_file="../Data/Nolle_Graphs/" +
                                       file.split("/")[-1] +
                                       "_precrec_bohmer.png")
Ejemplo n.º 4
0
def stephenRun():
    # Use the BPIC15_x_sorted.csv to generate new training and test datafiles with anomalies introduced
    # After running this once you can comment this line out
    # preProcessData("../Data/")

    # Indicate which are the training and test files
    train_file = "../Data/BPIC15_train_1.csv"
    test_file = "../Data/BPIC15_test_1.csv"

    # Load logfile to use as training data
    train_data = LogFile(train_file, ",", 0, 500000, None, "Case")
    train_data.remove_attributes(["Anomaly"])

    # Train the model
    model = edbn.train(train_data)

    # Test the model and save the scores in ../Data/output.csv
    test_data = LogFile(test_file,
                        ",",
                        header=0,
                        rows=500000,
                        time_attr=None,
                        trace_attr="Case",
                        values=train_data.values)
    edbn.test(test_data,
              "../Data/output.csv",
              model,
              label="Anomaly",
              normal_val="0")

    # Plot the ROC curve based on the results
    plot.plot_single_roc_curve("../Data/output.csv")
Ejemplo n.º 5
0
def compare_bpic_total(path):
    train = path + "BPIC15_train_total.csv"
    test = path + "BPIC15_test_total.csv"
    output = path + "Output/BPIC_15_output_total.csv"
    output_edbn = path + "Output/BPIC15_edbn_output_total.csv"
    prec_recall = path + "Output/prec_recall_total.png"
    roc = path + "Output/roc_total.png"

    if not os.path.exists(path + "Output"):
        os.mkdir(path + "Output")

    train_data = LogFile(train, ",", 0, 500000, "Time", "Case", activity_attr="Activity", convert=False)
    train_data.remove_attributes(["Anomaly", "Type", "Time"])
    test_data = LogFile(test, ",", 0, 500000, "Time", "Case", activity_attr="Activity", values=train_data.values, convert=False)

    bohmer_model = bmr.train(train_data)
    bmr.test(test_data, output, bohmer_model, label = "Anomaly", normal_val = 0)

    train_data.convert2int()
    test_data.convert2int()

    edbn_model = edbn_train(train_data)
    edbn_test(test_data, output_edbn, edbn_model, label = "Anomaly", normal_val = "0")

    plt.plot_compare_prec_recall_curve([output, output_edbn], ["Likelihood Graph", "EDBN"], save_file=prec_recall)
    plt.plot_compare_roc_curve([output, output_edbn], ["Likelihood Graph", "EDBN"], roc)
Ejemplo n.º 6
0
def duration_test():
    path = "../Data/Experiments_Duration/"
    train_rates = [0, 5, 10, 25]
    test_rates = [1, 5, 10, 25, 50, 100, 250, 500]
    anoms_rates = []
    for train_rate in train_rates:
        for test_rate in test_rates:
            anoms_rates.append((train_rate, test_rate))

    for i in range(len(anoms_rates)):
        print(anoms_rates[i])
        scores = []
        for run in range(RUNS):
            print("Run %i" % run)
            train_file = path + "%i_train_%i.csv" % (i, anoms_rates[i][0])
            test_file = path + "%i_test_%i.csv" % (i, anoms_rates[i][1])
            duration_generator.generate(10000, 10000, anoms_rates[i][0],
                                        anoms_rates[i][1], train_file,
                                        test_file)

            train_data = LogFile(train_file, ",", 0, 1000000, "date", "trace")
            train_data.remove_attributes(["Anomaly"])
            test_data = LogFile(test_file,
                                ",",
                                0,
                                1000000,
                                "date",
                                "trace",
                                values=train_data.values)

            train_data.keep_attributes(
                ["event", "date", "trace", "process", "resource", "random"])

            train_data.create_k_context()
            train_data.add_duration_to_k_context()
            bins = train_data.discretize("duration_0")
            test_data.create_k_context()
            test_data.add_duration_to_k_context()
            test_data.discretize("duration_0", bins)

            model = edbn.train(train_data)
            edbn.test(test_data, path + "Output_%i_%i.csv" % anoms_rates[i],
                      model, "anomaly", "0")

            output_file = path + "Output_%i_%i.csv" % anoms_rates[i]
            output_roc = path + "roc_%i_%i.png" % anoms_rates[i]
            output_prec = path + "prec_recall_%i_%i.png" % anoms_rates[i]

            score = plt.get_roc_auc(output_file)
            scores.append(plt.get_roc_auc(output_file))
            print("Score = %f" % score)

        with open(path + "results.txt", "a") as fout:
            fout.write("Testing:\ntrain rate: %i\ntest rate: %i\n" %
                       (anoms_rates[i][0], anoms_rates[i][1]))
            fout.write("Result: " + str(scores) + "\n")
            fout.write("Mean: %f Median: %f\n" %
                       (np.mean(scores), np.median(scores)))
            fout.write("Variance: %f\n\n" % np.var(scores))
Ejemplo n.º 7
0
def compare_bpics(path):
    for i in range(1, 6):
        # Input Files
        train = path + "BPIC15_train_%i.csv" % (i)
        test = path + "BPIC15_test_%i.csv" % (i)
        output = path + "Output/BPIC15_output_%i.csv" % (i)
        output_edbn = path + "Output/BPIC15_edbn_output_%i.csv" % (i)
        prec_recall = path + "Output/prec_recall_%i.png" % (i)
        roc = path + "Output/roc_%i.png" % (i)

        train_data = LogFile(train,
                             ",",
                             0,
                             500000,
                             "Time",
                             "Case",
                             activity_attr="Activity",
                             convert=False)
        train_data.remove_attributes(["Anomaly", "Type", "Time"])
        test_data = LogFile(test,
                            ",",
                            0,
                            500000,
                            "Time",
                            "Case",
                            activity_attr="Activity",
                            values=train_data.values,
                            convert=False)

        bohmer_model = bmr.train(train_data)
        bmr.test(test_data,
                 output,
                 bohmer_model,
                 label="Anomaly",
                 normal_val="0")

        train_data.convert2int()
        test_data.convert2int()

        edbn_model = edbn.train(train_data)
        edbn.test(test_data,
                  output_edbn,
                  edbn_model,
                  label="Anomaly",
                  normal_val="0")

        plt.plot_compare_prec_recall_curve([output, output_edbn],
                                           ["Likelihood Graph", "EDBN"],
                                           save_file=prec_recall)
        plt.plot_compare_roc_curve([output, output_edbn],
                                   ["Likelihood Graph", "EDBN"], roc)
Ejemplo n.º 8
0
def categorical_test():
    path = "../Data/Experiments/"
    train_rates = [0, 5, 10, 25]
    test_rates = [1, 5, 10, 25, 50, 100, 250, 500]
    anoms_rates = []
    for train_rate in train_rates:
        for test_rate in test_rates:
            anoms_rates.append((train_rate, test_rate))

    for i in range(len(anoms_rates)):
        print(anoms_rates[i])
        scores = []
        for run in range(RUNS):
            print("Run %i" % run)
            train_file = path + "%i_train_%i.csv" % (i, anoms_rates[i][0])
            test_file = path + "%i_test_%i.csv" % (i, anoms_rates[i][1])
            generator.create_shipment_data(10000, 10000, anoms_rates[i][0],
                                           anoms_rates[i][1], train_file,
                                           test_file)

            train_data = LogFile(train_file, ",", 0, 1000000, None, "Case")
            train_data.remove_attributes(["Anomaly"])
            test_data = LogFile(test_file,
                                ",",
                                0,
                                1000000,
                                None,
                                "Case",
                                values=train_data.values)

            model = edbn.train(train_data)
            edbn.test(test_data, path + "Output_%i_%i.csv" % anoms_rates[i],
                      model, "Anomaly", "0")

            output_file = path + "Output_%i_%i.csv" % anoms_rates[i]
            output_roc = path + "roc_%i_%i.png" % anoms_rates[i]
            output_prec = path + "prec_recall_%i_%i.png" % anoms_rates[i]

            score = plt.get_roc_auc(output_file)
            scores.append(plt.get_roc_auc(output_file))
            print("Score = %f" % score)

        with open(path + "results.txt", "a") as fout:
            fout.write("Testing:\ntrain rate: %i\ntest rate: %i\n" %
                       (anoms_rates[i][0], anoms_rates[i][1]))
            fout.write("Result: " + str(scores) + "\n")
            fout.write("Mean: %f Median: %f\n" %
                       (np.mean(scores), np.median(scores)))
            fout.write("Variance: %f\n\n" % np.var(scores))
Ejemplo n.º 9
0
def breast_discrete_exec():
    data = "../Data/breast_data.csv"
    labels = "../Data/breast_labels.csv"

    log = pd.read_csv(data, header=None)
    labels = pd.read_csv(labels, header=None)
    log["Label"] = labels[0]

    cols = []
    for c in log.columns:
        cols.append("V" + str(c))
    log.columns = cols
    log['ID'] = log.reset_index().index
    print(log)

    train = log[:100]
    test = log[100:]
    train = train[train.VLabel == 0].drop(columns=["VLabel"])

    train.to_csv("../Data/breast_train.csv", index=False)
    test.to_csv("../Data/breast_test.csv", index=False)

    train_data = LogFile("../Data/breast_train.csv",
                         ",",
                         0,
                         500000,
                         None,
                         "ID",
                         activity_attr="Activity")
    train_data.k = 0
    model = edbn.train(train_data)

    test_data = LogFile("../Data/breast_test.csv",
                        ",",
                        0,
                        500000,
                        None,
                        "ID",
                        activity_attr="Activity")
    test_data.k = 0
    print(test_data.data)
    edbn.test(test_data, "../Data/breast_discrete_output.csv", model, "VLabel",
              "0")

    plot.plot_single_roc_curve("../Data/breast_discrete_output.csv",
                               "breast_discrete")
    plot.plot_single_prec_recall_curve("../Data/breast_discrete_output.csv",
                                       "breast_discrete")
Ejemplo n.º 10
0
def compare(files, nolle_result, nolle_labels):
    i = 0
    for file in files:
        results = []
        results.append(file + "_output_sample.csv")
        results.append(file + "_output_full.csv")
        results.append(file + "_output_bohmer.csv")
        plot.plot_compare_prec_recall_curve(
            results, ["Sample", "Full", "Bohmer"] + nolle_labels,
            nolle_result,
            "Comparison",
            save_file="../Data/Nolle_Graphs/" + file.split("/")[-1] +
            "_compare_precrec.png")
        plot.plot_compare_roc_curve(results, ["Sample", "Full", "Bohmer"],
                                    "Comparison",
                                    save_file="../Data/Nolle_Graphs/" +
                                    file.split("/")[-1] + "_compare_roc.png")
        i += 1
Ejemplo n.º 11
0
def compare_bpic_total(path):
    train = path + "BPIC15_train_total.csv"
    test = path + "BPIC15_test_total.csv"
    output = path + "Output/BPIC_15_output_total.csv"
    output_edbn = path + "Output/BPIC15_edbn_output_total.csv"
    prec_recall = path + "Output/prec_recall_total.png"
    roc = path + "Output/roc_total.png"

    #bohmer_model = bmr.train(train, header = 0, length = 5000000)
    #bmr.test(train, test, output, bohmer_model, ",", 5000000, skip=0)

    train_data = LogFile(train, ",", 0, 500000, None, "Case")
    train_data.remove_attributes(["Anomaly"])
    test_data = LogFile(test, ",", 0, 500000, None, "Case", train_data.string_2_int, train_data.int_2_string)

    edbn_model = edbn.train(train_data)
    edbn.test(test_data, output_edbn, edbn_model, "Anomaly", "0")

    plt.plot_compare_prec_recall_curve([output, output_edbn], ["Likelihood Graph", "eDBN"], save_file=prec_recall)
    plt.plot_compare_roc_curve([output, output_edbn], ["Likelihood Graph", "eDBN"], roc)
Ejemplo n.º 12
0
def compare_bpics(path):
    for i in range(1,6):
        # Input Files
        train = path + "BPIC15_train_%i.csv" % (i)
        test = path + "BPIC15_test_%i.csv" % (i)
        output = path + "Output/BPIC15_output_%i.csv" % (i)
        output_edbn = path + "Output/BPIC15_edbn_output_%i.csv" % (i)
        prec_recall = path + "Output/prec_recall_%i.png" % (i)
        roc = path + "Output/roc_%i.png" % (i)

        #bohmer_model = bmr.train(train + "_ints", header = 0, length = 500000)
        #bmr.test(train + "_ints", test + "_ints", output, bohmer_model, ",", 500000, skip=0)

        train_data = LogFile(train, ",", 0, 500000, None, "Case")
        train_data.remove_attributes(["Anomaly"])
        test_data = LogFile(test, ",", 0, 500000, None, "Case", train_data.string_2_int, train_data.int_2_string)

        edbn_model = edbn.train(train_data)
        edbn.test(test_data, output_edbn, edbn_model, "Anomaly", "0")

        plt.plot_compare_prec_recall_curve([output, output_edbn], ["Likelihood Graph", "eDBN"], save_file=prec_recall)
        plt.plot_compare_roc_curve([output, output_edbn], ["Likelihood Graph", "eDBN"], roc)
Ejemplo n.º 13
0
            test_date = LogFile(test_file,
                                ",",
                                0,
                                1000000,
                                None,
                                "Case",
                                string_2_int=train_date.string_2_int,
                                int_2_string=train_date.int_2_string)
            model = edbn.train(train_date)
            edbn.test(test_date, path + "Output_%i_%i.csv" % anoms_rates[i],
                      model, "Anomaly", "0")

            output_file = path + "Output_%i_%i.csv" % anoms_rates[i]
            output_roc = path + "roc_%i_%i.png" % anoms_rates[i]
            output_prec = path + "prec_recall_%i_%i.png" % anoms_rates[i]

            score = plt.get_roc_auc(output_file)
            scores.append(plt.get_roc_auc(output_file))
            print("Score = %f" % score)

        with open(path + "results.txt", "a") as fout:
            fout.write("Testing:\ntrain rate: %i\ntest rate: %i\n" %
                       (anoms_rates[i][0], anoms_rates[i][1]))
            fout.write("Result: " + str(scores) + "\n")
            fout.write("Mean: %f Median: %f\n" %
                       (np.mean(scores), np.median(scores)))
            fout.write("Variance: %f\n\n" % np.var(scores))

            #plt.plot_single_roc_curve(output_file, output_roc)
            #plt.plot_single_prec_recall_curve(output_file, None, output_prec)
Ejemplo n.º 14
0
    for edge in net.edges():
        relations.append((edge[0], edge[1]))

    for relation in relations:
    #    if relation not in mappings:
        edbn.get_variable(relation[1]).add_parent(edbn.get_variable(relation[0]))
        print(relation[0], "->", relation[1])

    edbn.train(train, single=True)

    ranking = edbn.test(test)
    ranking.sort(key=lambda l: l[0].get_total_score())
    scores = []
    y = []
    for r in ranking:
        scores.append((getattr(r[1], "Index"), r[0].get_total_score(), getattr(r[1], "Class") != 1))
        y.append(r[0].get_total_score())
    print(len(scores))

    with open("../output.csv", "w") as fout:
        for s in scores:
            fout.write(",".join([str(i) for i in s]))
            fout.write("\n")

    plot.plot_single_roc_curve("../output.csv")
    plot.plot_single_prec_recall_curve("../output.csv")

    plt.plot(list(range(len(y))), y)
    plt.show()

Ejemplo n.º 15
0
def run_full():
    # Use the BPIC15_x_sorted.csv to generate new training and test datafiles with anomalies introduced
    # After running this once you can comment this line out
    #preProcessData("../Data/")

    for i in range(1, 2):
        # Indicate which are the training and test files
        train_file = "../Data/bpic15_%i_train.csv" % (i)
        test_file = "../Data/bpic15_%i_test.csv" % (i)

        # Load logfile to use as training data
        train_data = LogFile(train_file,
                             ",",
                             0,
                             500000,
                             time_attr="Complete_Timestamp",
                             trace_attr="Case_ID",
                             activity_attr="Activity")
        train_data.remove_attributes(["Anomaly"])

        # train_data.keep_attributes(["Case_ID", "Complete_Timestamp", "Activity", "Resource", "case_termName"])
        train_data.remove_attributes(["planned"])
        train_data.remove_attributes(["dueDate"])
        train_data.remove_attributes(["dateFinished"])

        # train_data.keep_attributes(["Case_ID", "Complete_Timestamp", "Activity", "Resource", "Weekday"])

        # train_data.create_k_context()
        # train_data.add_duration_to_k_context()

        # Train the model
        model = edbn.train(train_data)

        # Test the model and save the scores in ../Data/output.csv
        test_data = LogFile(test_file,
                            ",",
                            header=0,
                            rows=500000,
                            time_attr="Complete_Timestamp",
                            trace_attr="Case_ID",
                            values=train_data.values)
        # test_data.create_k_context()
        # test_data.add_duration_to_k_context()

        edbn.test(test_data,
                  "../Data/output2_%i.csv" % (i),
                  model,
                  label="Anomaly",
                  normal_val="0",
                  train_data=train_data)

        # Plot the ROC curve based on the results
        plot.plot_single_roc_curve("../Data/output2_%i.csv" % (i),
                                   title="BPIC15_%i" % (i))
        plot.plot_single_prec_recall_curve("../Data/output2_%i.csv" % (i),
                                           title="BPIC15_%i" % (i))

    out_files = []
    labels = []
    for i in range(1, 6):
        out_files.append("../Data/output2_%i.csv" % (i))
        labels.append("MUNIS_%i" % (i))
    plot.plot_compare_roc_curve(out_files, labels, "BPIC15 Comparison")
    plot.plot_compare_prec_recall_curve(out_files, labels, "BPIC15 Comparison")