Ejemplo n.º 1
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def __init__(self, FLAG):
        # used for prediction (classification)
        self._classNum = FLAG.ClassNum
        # center matrix C: [M * K * D]
        # D = U, U is the embedding layer output dimension
        self._k = FLAG.K
        # from code length get sub space count
        assert self._k != 0 and (self._k & (self._k - 1)) == 0
        perLength = int(np.asscalar(np.log2(self._k)))
        self._stackLevel = FLAG.BitLength // perLength

        PrintWithTime("Init with config:")
        print("                # Stack Levels :", self._stackLevel)
        print("                # Class Num  :", self._classNum)
        print("                # Centers K  :", self._k)

        # other settings for learning
        self._initLR = FLAG.LearningRate
        self._epoch = FLAG.Epoch
        self._batchSize = FLAG.BatchSize
        self._saveModel = FLAG.SaveModel
        self._recallatR = FLAG.R
        self._multiLabel = FLAG.Dataset == "NUS"

        self._lambda = FLAG.Lambda
        self._tau = FLAG.Tau
        self._mu = FLAG.Mu
        self._nu = FLAG.Nu

        # other settings for printing
        self._printEvery = FLAG.PrintEvery

        assert (FLAG.Mode == 'train' or FLAG.Mode == 'eval')

        self._train = FLAG.Mode == 'train'

        if self._train:
            # dataset
            self.Dataset = Dataset(FLAG.Dataset, FLAG.Mode, FLAG.BatchSize,
                                   IMAGE_WIDTH, IMAGE_HEIGHT)
        self.DatasetName = FLAG.Dataset
        # tensorflow configs
        config = tf.ConfigProto(allow_soft_placement=True)
        config.gpu_options.allow_growth = True
        self._config = config

        self.NetPQ = Encoder_Alex(
            self._batchSize, self._classNum, self._lambda, self._stackLevel,
            self._k, self._multiLabel,
            self._train) if CNN_TYPE == 0 else Encoder_VGG(
                self._batchSize, self._classNum, self._stackLevel, self._k,
                self._train)

        self._name = "lr_{0}_batch_{1}_M_{2}_K_{3}".format(
            self._initLR, self._batchSize, self._stackLevel, self._k)
Ejemplo n.º 2
0
Archivo: DSQ.py Proyecto: stoneyang/DRQ
    def GetFeature(self, dataset):
        if os.path.exists(self.SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, self.SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + self.SESSION_SAVE_PATH)
                database = Object()

                dim = self.NetPQ.X.get_shape().as_list()[1]

                Nb = dataset.DataNum
                database_feature = np.zeros([Nb, dim], dtype=np.float32)
                database.label = np.zeros([Nb, self._classNum], dtype=np.int16)

                codes = np.zeros([Nb, self._stackLevel], np.int32)

                total_db = (Nb // self._batchSize) + 1
                with trange(total_db, ncols=50) as t:
                    for i in t:
                        idx = np.arange(start=i * self._batchSize,
                                        stop=np.minimum(
                                            Nb, (i + 1) * self._batchSize),
                                        step=1)
                        inp, label = dataset.Get(idx)
                        num = inp.shape[0]
                        database.label[i *
                                       self._batchSize:(i * self._batchSize +
                                                        num)] = label
                        if inp.shape[0] != self._batchSize:
                            placeholder = np.zeros([
                                self._batchSize - inp.shape[0], inp.shape[1],
                                inp.shape[2], inp.shape[3]
                            ])
                            inp = np.concatenate((inp, placeholder))

                        out, hardCode = sess.run(
                            [self.NetPQ.X, self.NetPQ.HardCode],
                            {self.Input: inp})
                        hardCode = sess.run(self.NetPQ.HardCode,
                                            {self.Input: inp})
                        codes[i * self._batchSize:(i * self._batchSize) +
                              num] = np.array(hardCode, np.int32).T[:num]
                        database_feature[i *
                                         self._batchSize:(i *
                                                          self._batchSize) +
                                         num] = out[:num]
                database.output = database_feature

                # [N, M]
                database.codes = codes
                codebook = sess.run(self.NetPQ.Codebook)
                scale = sess.run(self.NetPQ.CodebookScale)
            return database, codebook, scale
Ejemplo n.º 3
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def EvalClassification(self, queryX, queryY):
        if os.path.exists(SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + SESSION_SAVE_PATH)
                Nq = queryX.shape[0]
                dim = self._classNum

                if self.DatasetName == 'NUS':
                    result = -1 * np.ones([Nq, dim], np.int)

                    for i in range((Nq // self._batchSize) + 1):
                        inp = queryX[i * self._batchSize:(i + 1) *
                                     self._batchSize]
                        num = inp.shape[0]
                        if inp.shape[0] != self._batchSize:
                            placeholder = np.zeros([
                                self._batchSize - inp.shape[0], inp.shape[1],
                                inp.shape[2], inp.shape[3]
                            ])
                            inp = np.concatenate((inp, placeholder))

                        out = sess.run(self.NetPQ.cls, {self.Input: inp})
                        for j in range(num):
                            result[i * self._batchSize + j,
                                   np.argsort(out[j])[::-1][:2]] = 1

                    checked = np.sum(np.equal(result, queryY), axis=1) > 0
                    accuracy = np.mean(checked)
                    print(accuracy)
                    return

                result = np.zeros([Nq], np.int)

                for i in range((Nq // self._batchSize) + 1):
                    inp = queryX[i * self._batchSize:(i + 1) * self._batchSize]
                    num = inp.shape[0]
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    out = sess.run(self.NetPQ.cls, {self.Input: inp})
                    result[i * self._batchSize:(i * self._batchSize) +
                           num] = np.argmax(out[:num], axis=1)

                accuracy = np.mean(np.equal(result, np.argmax(queryY, axis=1)))
                print(accuracy)
Ejemplo n.º 4
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def InitVariables(self):
        self.Input = tf.placeholder(
            tf.float32,
            shape=[self._batchSize, IMAGE_HEIGHT, IMAGE_WIDTH, 3],
            name="Input")
        self.LabelHot = tf.placeholder(tf.int32,
                                       shape=[self._batchSize, self._classNum],
                                       name="Label")

        self.GlobalStep = tf.Variable(0, trainable=False)

        self.Inference()
        self.ApplyLoss()

        PrintWithTime(BarFormat("Variables Inited"))
Ejemplo n.º 5
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def CheckTime(self, queryX):
        if os.path.exists(SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + SESSION_SAVE_PATH)

                inp = queryX[:self._batchSize]

                start = time.time()
                for _ in range(1000):
                    _ = sess.run(self.NetPQ.HardCode, {self.Input: inp})
                end = time.time()
                print('total time', end - start)
                print('avg time', (end - start) / (1000 * self._batchSize))
Ejemplo n.º 6
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
 def Save(self):
     with tf.Session(config=self._config) as sess:
         # Save the session
         save_path = self._saver.save(sess, SESSION_SAVE_PATH)
         PrintWithTime(BarFormat("Model saved"))
         PrintWithTime("Path: " + save_path)
Ejemplo n.º 7
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def GetRetrievalMat(self, queryX, queryY, dataset):
        self.R = self._recallatR if self._recallatR > 0 else dataset.DataNum
        if os.path.exists(SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + SESSION_SAVE_PATH)

                query = Object()
                database = Object()
                query.label = queryY

                Nq = queryX.shape[0]

                dim = self.NetPQ.X.get_shape().as_list()[1]

                query_feature = np.zeros([Nq, dim], np.float16)
                for i in range((Nq // self._batchSize) + 1):
                    inp = queryX[i * self._batchSize:(i + 1) * self._batchSize]
                    num = inp.shape[0]
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    out = sess.run(self.NetPQ.X, {self.Input: inp})
                    query_feature[i * self._batchSize:(i * self._batchSize) +
                                  num] = out[:num]
                query.output = query_feature

                Nb = dataset.DataNum
                database.label = np.zeros([Nb, self._classNum], dtype=np.int16)

                codes = np.zeros([Nb, self._stackLevel], np.int32)

                total_db = (Nb // self._batchSize) + 1
                for i in range(total_db):
                    idx = np.arange(start=i * self._batchSize,
                                    stop=np.minimum(Nb,
                                                    (i + 1) * self._batchSize),
                                    step=1)
                    inp, label = dataset.Get(idx)
                    print(inp.shape, label.shape)
                    num = inp.shape[0]
                    database.label[i * self._batchSize:(i * self._batchSize +
                                                        num)] = label
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    hardCode = sess.run(self.NetPQ.HardCode, {self.Input: inp})
                    codes[i * self._batchSize:(i * self._batchSize) +
                          num] = np.array(hardCode, np.int32).T[:num]
                    ProgressBar((i + 1) / total_db)

                # [N, M]
                database.codes = codes
                codebook = sess.run(self.NetPQ.Codebook)
                # np.save('database_codes_DSQ', codes)
            db = mAP.Quantize_AQ(database.codes, codebook, 4).T

            del dataset
            id_all = np.zeros([query.output.shape[0], self.R], np.int)
            retrieval_mat = np.zeros([query.output.shape[0], self.R], np.bool)
            for j in range(query.output.shape[0] // 50 + 1):
                q = query.output[j * 50:(j + 1) * 50]
                d = -np.dot(q, db)
                ids = np.argsort(d, 1)
                for i in range(d.shape[0]):
                    label = query.label[j * 50 + i, :]
                    label[label == 0] = -1
                    idx = ids[i, :]
                    imatch = np.sum(database.label[idx[0:self.R], :] == label,
                                    1) > 0
                    id_all[j * 50 + i] = idx[:self.R]
                    retrieval_mat[j * 50 + i] = imatch[:self.R]
            np.save('retrievalMat_' + self.DatasetName, retrieval_mat)
            np.save('ids', id_all)
            return retrieval_mat, id_all
Ejemplo n.º 8
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def Evaluate(self, queryX, queryY, dataset):
        print(self._recallatR if self._recallatR > 0 else 'all')
        if os.path.exists(SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + SESSION_SAVE_PATH)

                query = Object()
                database = Object()
                query.label = queryY

                Nq = queryX.shape[0]

                dim = self.NetPQ.X.get_shape().as_list()[1]

                query.output = np.zeros([Nq, dim], np.float16)
                for i in range((Nq // self._batchSize) + 1):
                    inp = queryX[i * self._batchSize:(i + 1) * self._batchSize]
                    num = inp.shape[0]
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    out = sess.run(self.NetPQ.X, {self.Input: inp})
                    query.output[i * self._batchSize:(i * self._batchSize) +
                                 num] = out[:num]

                Nb = dataset.DataNum
                database_feature = np.zeros([Nb, dim], dtype=np.float16)
                database.label = np.zeros([Nb, self._classNum], dtype=np.int16)

                database.codes = np.zeros([Nb, self._stackLevel], np.int32)

                start = time.time()
                print('Encoding database')
                total_db = (Nb // self._batchSize) + 1
                for i in range(total_db):
                    idx = np.arange(start=i * self._batchSize,
                                    stop=np.minimum(Nb,
                                                    (i + 1) * self._batchSize),
                                    step=1)
                    inp, label = dataset.Get(idx)
                    print(inp.shape, label.shape)
                    num = inp.shape[0]
                    database.label[i * self._batchSize:(i * self._batchSize +
                                                        num)] = label
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    hardCode = sess.run(self.NetPQ.HardCode, {self.Input: inp})
                    database.codes[i * self._batchSize:(i * self._batchSize) +
                                   num] = np.array(hardCode, np.int32).T[:num]
                    database_feature[i *
                                     self._batchSize:(i * self._batchSize) +
                                     num] = out[:num]
                    ProgressBar((i + 1) / total_db)

                end = time.time()
                print('Encoding Complete')
                print('Time:', end - start)
                print('Average time for single sample:')
                print((end - start) / Nb)
                database.output = database_feature

                del dataset

                codebook = sess.run(self.NetPQ.Codebook)

                res = mAP(
                    codebook, self._recallatR if self._recallatR > 0 else
                    database.codes.shape[0], database)

                return res.AQD_mAP(query)
Ejemplo n.º 9
0
Archivo: DPQ.py Proyecto: stoneyang/DPQ
    def Train(self):
        PrintWithTime(BarFormat("Training Start"))

        start = time.time()

        with tf.Session(config=self._config) as sess:
            sess.run(tf.global_variables_initializer())
            if self._saveModel:
                # Create a saver
                self._saver = tf.train.Saver()
            self.AddSummary(sess.graph)
            """ Pre-train stage """
            PrintWithTime(BarFormat("Pre-train Stage"))
            for i in range(self._epoch // 2):
                j = 0
                if self._saveModel:
                    self._saver.save(sess, SESSION_SAVE_PATH)
                PrintWithTime("Saved @ epoch {0}".format(i))
                while not self.Dataset.EpochComplete:
                    j += 1
                    image, label = self.Dataset.NextBatch()
                    assert image.shape[0] == self._batchSize
                    _ = sess.run(self.TrainEncoder_FINE_TUNE, {
                        self.Input: image,
                        self.LabelHot: label
                    })
                    if j % self._printEvery == 0:
                        # Can't simply run with (self.NetPQ.JointCenter +
                        # self.NetPQ.Distortion + self.NetPQ.QHard +
                        # self.NetPQ.QSoft)
                        # This will cause graph re-creation and variables
                        # re-allocation
                        PrintWithTime(
                            "Epoch {0}, Step {1}: total loss = {2}".format(
                                i, j,
                                np.mean(
                                    sess.run(self.NetPQ.loss, {
                                        self.Input: image,
                                        self.LabelHot: label
                                    }))))
                        ProgressBar((i + self.Dataset.Progress) / self._epoch)
                        # self._writer.add_summary(sess.run(self._summary, {self.Input: image, self.LabelHot: label}), global_step=self.GlobalStep)
            """ Codebook learning stage """
            PrintWithTime(BarFormat("Codebook Learning Stage"))
            for i in range(self._epoch // 2 + 1, self._epoch):
                if self._saveModel:
                    self._saver.save(sess, SESSION_SAVE_PATH)
                PrintWithTime("Saved @ epoch {0}".format(i))
                while not self.Dataset.EpochComplete:
                    j += 1
                    image, label = self.Dataset.NextBatch()
                    assert image.shape[0] == self._batchSize
                    _ = sess.run(self.TrainEncoder_FINE_TUNE, {
                        self.Input: image,
                        self.LabelHot: label
                    })
                    _ = sess.run(self.TrainCodebook, {
                        self.Input: image,
                        self.LabelHot: label
                    })

                    if j % self._printEvery == 0:
                        jointLoss, hardDistLoss, softDistLoss, netPQLoss = sess.run(
                            [
                                self.NetPQ.JointCenter,
                                self.NetPQ.HardDistortion,
                                self.NetPQ.SoftDistortion, self.NetPQ.loss
                            ], {
                                self.Input: image,
                                self.LabelHot: label
                            })
                        net = [
                            np.mean(jointLoss),
                            np.mean(softDistLoss),
                            np.mean(hardDistLoss),
                            np.mean(netPQLoss)
                        ]
                        PrintWithTime(
                            "Epoch {0}, Step {1}: NetPQ Loss: {2}".format(
                                i, j, net))
                        ProgressBar((i + self.Dataset.Progress) / self._epoch)
                        # self._writer.add_summary(sess.run(self._summary, {self.Input: image, self.LabelHot: label}), global_step=self.GlobalStep)
            end = time.time()
            print('%d seconds for %d epochs, %d batches and %d samples' %
                  (end - start, self._epoch, j, j * self._batchSize))
            PrintWithTime(BarFormat("Train Finished"))
Ejemplo n.º 10
0
Archivo: DSQ.py Proyecto: stoneyang/DRQ
    def GetFeature(self, queryX, queryY, dataset):
        if os.path.exists(self.SESSION_SAVE_PATH + '.meta'):
            with tf.Session(config=self._config) as sess:
                self.InitVariables()
                self._saver = tf.train.Saver()
                self._saver.restore(sess, self.SESSION_SAVE_PATH)
                PrintWithTime("Restored model from " + self.SESSION_SAVE_PATH)

                query = Object()
                database = Object()
                query.label = queryY

                Nq = queryX.shape[0]

                dim = self.NetPQ.X.get_shape().as_list()[1]

                query_feature = np.zeros([Nq, dim], np.float32)
                for i in range((Nq // self._batchSize) + 1):
                    inp = queryX[i * self._batchSize:(i + 1) * self._batchSize]
                    num = inp.shape[0]
                    if inp.shape[0] != self._batchSize:
                        placeholder = np.zeros([
                            self._batchSize - inp.shape[0], inp.shape[1],
                            inp.shape[2], inp.shape[3]
                        ])
                        inp = np.concatenate((inp, placeholder))

                    out = sess.run(self.NetPQ.X, {self.Input: inp})
                    query_feature[i * self._batchSize:(i * self._batchSize) +
                                  num] = out[:num]
                query.output = query_feature

                Nb = dataset.DataNum
                database_feature = np.zeros([Nb, dim], dtype=np.float32)
                database.label = np.zeros([Nb, self._classNum], dtype=np.int16)

                codes = np.zeros([Nb, self._stackLevel], np.int32)

                start = time.time()
                print('Encoding database')
                total_db = (Nb // self._batchSize) + 1
                with trange(total_db, ncols=50) as t:
                    for i in t:
                        idx = np.arange(start=i * self._batchSize,
                                        stop=np.minimum(
                                            Nb, (i + 1) * self._batchSize),
                                        step=1)
                        inp, label = dataset.Get(idx)
                        num = inp.shape[0]
                        database.label[i *
                                       self._batchSize:(i * self._batchSize +
                                                        num)] = label
                        if inp.shape[0] != self._batchSize:
                            placeholder = np.zeros([
                                self._batchSize - inp.shape[0], inp.shape[1],
                                inp.shape[2], inp.shape[3]
                            ])
                            inp = np.concatenate((inp, placeholder))

                        out, hardCode = sess.run(
                            [self.NetPQ.X, self.NetPQ.HardCode],
                            {self.Input: inp})
                        hardCode = sess.run(self.NetPQ.HardCode,
                                            {self.Input: inp})
                        codes[i * self._batchSize:(i * self._batchSize) +
                              num] = np.array(hardCode, np.int32).T[:num]
                        database_feature[i *
                                         self._batchSize:(i *
                                                          self._batchSize) +
                                         num] = out[:num]

                end = time.time()
                print('Encoding Complete')
                print('Time:', end - start)
                print('Average time for single sample:')
                print((end - start) / Nb)
                database.output = database_feature
                scale = sess.run(self.NetPQ.CodebookScale)
                # [N, M]
                database.codes = codes
                return query, database, scale
Ejemplo n.º 11
0
Archivo: DSQ.py Proyecto: stoneyang/DRQ
    def __init__(self, FLAG):
        self.SESSION_SAVE_PATH = "./models/{0}/{1}.ckpt"
        # used for prediction (classification)
        self._classNum = FLAG.ClassNum
        # center matrix C: [M * K * D]
        # D = U, U is the embedding layer output dimension
        self._k = FLAG.K
        # from code length get sub space count
        assert self._k != 0 and (self._k & (self._k - 1)) == 0
        perLength = int(np.asscalar(np.log2(self._k)))
        self._stackLevel = FLAG.BitLength // perLength

        PrintWithTime("Init with config:")
        print("                # Stack Levels :", self._stackLevel)
        print("                # Class Num  :", self._classNum)
        print("                # Centers K  :", self._k)

        # other settings for learning
        self._initLR = FLAG.LearningRate
        self._epoch = FLAG.Epoch
        self._batchSize = FLAG.BatchSize
        self._saveModel = FLAG.SaveModel
        self._recallatR = FLAG.R
        self._multiLabel = str.upper(FLAG.Dataset) == "NUS" or str.upper(
            FLAG.Dataset) == 'COCO'

        self._lambda = FLAG.Lambda
        self._tau = FLAG.Tau
        self._mu = FLAG.Mu
        self._nu = FLAG.Nu

        self._initMargin = 1.0
        self._targetMargin = 16.0
        self._windowSize = 100
        self._threshold = 0.3
        self._factor = 1.1

        if not os.path.exists('./models'):
            os.mkdir('./models')

        self.SESSION_SAVE_PATH = self.SESSION_SAVE_PATH.format(
            str.upper(FLAG.Dataset), 'Alex' if CNN_TYPE == 0 else 'VGG')

        # other settings for printing
        self._printEvery = FLAG.PrintEvery

        assert (FLAG.Mode == 'train' or FLAG.Mode == 'eval')

        self._train = FLAG.Mode == 'train'

        if self._train:
            # dataset
            self.Dataset = Dataset(str.upper(FLAG.Dataset), FLAG.Mode,
                                   FLAG.BatchSize, IMAGE_WIDTH, IMAGE_HEIGHT)
        self.DatasetName = FLAG.Dataset
        # tensorflow configs
        config = tf.ConfigProto(allow_soft_placement=True)
        config.gpu_options.allow_growth = True
        self._config = config

        self.NetPQ = Encoder_Alex(
            str.upper(FLAG.Dataset), self._batchSize, self._classNum,
            self._lambda, self._stackLevel, self._k, self._multiLabel,
            self._train) if CNN_TYPE == 0 else Encoder_VGG(
                self._batchSize, self._classNum, self._stackLevel, self._k,
                self._train)

        self._name = "lr_{0}_epoch_{1}_batch_{2}_M_{3}_K_{4}_{5}_{6}".format(
            self._initLR,
            self._epoch, self._batchSize, self._stackLevel, self._k,
            str.upper(FLAG.Dataset), 'Alex' if CNN_TYPE == 0 else 'VGG')
Ejemplo n.º 12
0
Archivo: DSQ.py Proyecto: stoneyang/DRQ
    def Train(self):

        movingMean = np.ones([self._windowSize])
        margin = self._initMargin
        getToTarget = True

        PrintWithTime(BarFormat("Training Start"))

        start = time.time()

        with tf.Session(config=self._config) as sess:
            sess.run(tf.global_variables_initializer())
            if self._saveModel:
                # Create a saver
                self._saver = tf.train.Saver()
            self.AddSummary(sess.graph)

            pbar = tqdm(total=100,
                        ncols=50,
                        bar_format='{percentage:3.0f}%|{bar}|{postfix}')

            j = 0
            increment = 0
            """ Pre-train stage """
            tqdm.write(BarFormat("Pre-train Stage"))
            for i in range(self._epoch // 2):
                if self._saveModel:
                    self._saver.save(sess, self.SESSION_SAVE_PATH)
                while not self.Dataset.EpochComplete:
                    j += 1
                    image, label = self.Dataset.NextBatch()
                    assert image.shape[0] == self._batchSize
                    [_, triplet, summary] = sess.run([
                        self.TrainEncoder_FINE_TUNE, self.NetPQ.Distinction,
                        self._summary
                    ], {
                        self.Input: image,
                        self.LabelHot: label
                    })

                    if not getToTarget:
                        movingMean[:-1] = movingMean[1:]
                        movingMean[-1] = triplet
                        if np.mean(movingMean) < self._threshold:
                            tqdm.write('raise margin from {0} to {1}'.format(
                                margin, self._factor * margin))
                            margin *= self._factor
                            if margin > self._targetMargin:
                                margin = self._targetMargin
                                getToTarget = True
                            a = tf.assign(self.NetPQ.Margin, margin)
                            sess.run(a)
                            movingMean[:] = margin

                    self._writer.add_summary(summary, global_step=j)
                    if j % self._printEvery == 0:
                        # Can't simply run with (self.NetPQ.JointCenter +
                        # self.NetPQ.Distortion + self.NetPQ.QHard +
                        # self.NetPQ.QSoft)
                        # This will cause graph re-creation and variables
                        # re-allocation
                        pbar.postfix = "Epoch {0} Step {1} loss={2:.2f}".format(
                            i, j,
                            np.mean(
                                sess.run(self.NetPQ.loss, {
                                    self.Input: image,
                                    self.LabelHot: label
                                })))
                        percent = (100 *
                                   (i + self.Dataset.Progress)) / self._epoch
                        pbar.update(percent - increment)
                        increment = percent
            """ Codebook learning stage 1 """
            tqdm.write(BarFormat("Codebook Learning Stage"))
            for i in range(self._epoch // 2 + 1, 3 * self._epoch // 4):
                if self._saveModel:
                    self._saver.save(sess, self.SESSION_SAVE_PATH)
                while not self.Dataset.EpochComplete:
                    j += 1
                    image, label = self.Dataset.NextBatch()
                    assert image.shape[0] == self._batchSize
                    [_, _, triplet, summary] = sess.run([
                        self.TrainEncoder_FINE_TUNE, self.TrainCodebook_1,
                        self.NetPQ.Distinction, self._summary
                    ], {
                        self.Input: image,
                        self.LabelHot: label
                    })
                    self._writer.add_summary(summary, global_step=j)

                    if not getToTarget:
                        movingMean[:-1] = movingMean[1:]
                        movingMean[-1] = triplet
                        if np.mean(movingMean) < self._threshold:
                            tqdm.write('raise margin from {0} to {1}'.format(
                                margin, self._factor * margin))
                            margin *= self._factor
                            if margin > self._targetMargin:
                                margin = self._targetMargin
                                getToTarget = True
                            a = tf.assign(self.NetPQ.Margin, margin)
                            sess.run(a)
                            movingMean[:] = margin

                    if j % self._printEvery == 0:
                        pbar.postfix = "Epoch {0} Step {1} loss={2:.2f}".format(
                            i, j,
                            np.mean(
                                sess.run(self.NetPQ.loss, {
                                    self.Input: image,
                                    self.LabelHot: label
                                })))
                        percent = (100 *
                                   (i + self.Dataset.Progress)) / self._epoch
                        pbar.update(percent - increment)
                        increment = percent
            """ Codebook learning stage 2 """
            for i in range(3 * self._epoch // 4 + 1, self._epoch):
                if self._saveModel:
                    self._saver.save(sess, self.SESSION_SAVE_PATH)
                while not self.Dataset.EpochComplete:
                    j += 1
                    image, label = self.Dataset.NextBatch()
                    assert image.shape[0] == self._batchSize
                    if j % 2 == 0:
                        [_, _, triplet,
                         summary] = sess.run([
                             self.TrainEncoder_FINE_TUNE, self.TrainCodebook_1,
                             self.NetPQ.Distinction, self._summary
                         ], {
                             self.Input: image,
                             self.LabelHot: label
                         })
                    else:
                        [_, _, triplet,
                         summary] = sess.run([
                             self.TrainEncoder_FINE_TUNE, self.TrainCodebook_2,
                             self.NetPQ.Distinction, self._summary
                         ], {
                             self.Input: image,
                             self.LabelHot: label
                         })

                    if not getToTarget:
                        movingMean[:-1] = movingMean[1:]
                        movingMean[-1] = triplet
                        if np.mean(movingMean) < self._threshold:
                            tqdm.write('raise margin from {0} to {1}'.format(
                                margin, self._factor * margin))
                            margin *= self._factor
                            if margin > self._targetMargin:
                                margin = self._targetMargin
                                getToTarget = True
                            a = tf.assign(self.NetPQ.Margin, margin)
                            sess.run(a)
                            movingMean[:] = margin

                    self._writer.add_summary(summary, global_step=j)

                    if j % self._printEvery == 0:
                        pbar.postfix = "Epoch {0} Step {1} loss={2:.2f}".format(
                            i, j,
                            np.mean(
                                sess.run(self.NetPQ.loss, {
                                    self.Input: image,
                                    self.LabelHot: label
                                })))
                        percent = (100 *
                                   (i + self.Dataset.Progress)) / self._epoch
                        pbar.update(percent - increment)
                        increment = percent
            end = time.time()
            pbar.close()
            print('%d seconds for %d epochs, %d batches and %d samples' %
                  (end - start, self._epoch, j, j * self._batchSize))
            PrintWithTime(BarFormat("Train Finished"))