Ejemplo n.º 1
0
    def build_models(self):
        ################### Text and Image encoders ########################################
        # if cfg.TRAIN.NET_E == '':
        #   print('Error: no pretrained text-image encoders')
        #   return

        VGG = VGGNet()

        for p in VGG.parameters():
            p.requires_grad = False

        print("Load the VGG model")
        VGG.eval()

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        text_encoder = RNN_ENCODER(self.n_words,
                                   nhidden=cfg.TEXT.EMBEDDING_DIM)

        # when NET_E = '', train the image_encoder and text_encoder jointly
        if cfg.TRAIN.NET_E != '':
            state_dict = torch.load(
                cfg.TRAIN.NET_E,
                map_location=lambda storage, loc: storage).state_dict()
            text_encoder.load_state_dict(state_dict)
            for p in text_encoder.parameters():
                p.requires_grad = False
            print('Load text encoder from:', cfg.TRAIN.NET_E)
            text_encoder.eval()

            img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                       'image_encoder')
            state_dict = torch.load(
                img_encoder_path,
                map_location=lambda storage, loc: storage).state_dict()
            image_encoder.load_state_dict(state_dict)
            for p in image_encoder.parameters():
                p.requires_grad = False
            print('Load image encoder from:', img_encoder_path)
            image_encoder.eval()

        ####################### Generator and Discriminators ##############
        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            netG = G_DCGAN()
            if cfg.TRAIN.W_GAN:
                netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()
            netG.apply(weights_init)
            if cfg.TRAIN.W_GAN:
                if cfg.TREE.BRANCH_NUM > 0:
                    netsD.append(D_NET64())
                if cfg.TREE.BRANCH_NUM > 1:
                    netsD.append(D_NET128())
                if cfg.TREE.BRANCH_NUM > 2:
                    netsD.append(D_NET256())
                for i in range(len(netsD)):
                    netsD[i].apply(weights_init)

        print('# of netsD', len(netsD))
        #
        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = torch.load(cfg.TRAIN.NET_G,
                                    map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)
            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                      torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)
        # ########################################################### #
        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            VGG = VGG.cuda()
            for i in range(len(netsD)):
                netsD[i].cuda()
        return [text_encoder, image_encoder, netG, netsD, epoch, VGG]
Ejemplo n.º 2
0
    def build_models(self):

        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return

        # vgg16 network
        style_loss = VGGNet()

        for p in style_loss.parameters():
            p.requires_grad = False

        print("Load the style loss model")
        style_loss.eval()

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        netsD = []
        if cfg.GAN.B_DCGAN:
            if cfg.TREE.BRANCH_NUM == 1:
                from model import D_NET64 as D_NET
            elif cfg.TREE.BRANCH_NUM == 2:
                from model import D_NET128 as D_NET
            else:  # cfg.TREE.BRANCH_NUM == 3:
                from model import D_NET256 as D_NET
            netG = G_DCGAN()
            netsD = [D_NET(b_jcu=False)]
        else:
            from model import D_NET64, D_NET128, D_NET256
            netG = G_NET()

            if cfg.TREE.BRANCH_NUM > 0:
                netsD.append(D_NET64())
            if cfg.TREE.BRANCH_NUM > 1:
                netsD.append(D_NET128())
            if cfg.TREE.BRANCH_NUM > 2:
                netsD.append(D_NET256())
        netG.apply(weights_init)

        for i in range(len(netsD)):
            netsD[i].apply(weights_init)
        print('# of netsD', len(netsD))
        #
        epoch = 0
        if cfg.TRAIN.NET_G != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
            netG.load_state_dict(state_dict)

            print('Load G from: ', cfg.TRAIN.NET_G)
            istart = cfg.TRAIN.NET_G.rfind('_') + 1
            iend = cfg.TRAIN.NET_G.rfind('.')
            epoch = cfg.TRAIN.NET_G[istart:iend]
            epoch = int(epoch) + 1
            if cfg.TRAIN.B_NET_D:
                Gname = cfg.TRAIN.NET_G
                for i in range(len(netsD)):
                    s_tmp = Gname[:Gname.rfind('/')]
                    Dname = '%s/netD%d.pth' % (s_tmp, i)
                    print('Load D from: ', Dname)
                    state_dict = \
                        torch.load(Dname, map_location=lambda storage, loc: storage)
                    netsD[i].load_state_dict(state_dict)

        # Create a target network.
        target_netG = deepcopy(netG)

        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            style_loss = style_loss.cuda()

            # The target network is stored on the scondary GPU.---------------------------------
            target_netG.cuda(secondary_device)
            target_netG.ca_net.device = secondary_device
            #-----------------------------------------------------------------------------------

            netG.cuda()
            for i in range(len(netsD)):
                netsD[i] = netsD[i].cuda()

        # Disable training in the target network:
        for p in target_netG.parameters():
            p.requires_grad = False

        return [
            text_encoder, image_encoder, netG, target_netG, netsD, epoch,
            style_loss
        ]
Ejemplo n.º 3
0
    def build_models(self):
        # ################### models ######################################## #
        if cfg.TRAIN.NET_E == '':
            print('Error: no pretrained text-image encoders')
            return
        if cfg.TRAIN.NET_G == '':
            print('Error: no pretrained main module')
            return

        VGG = VGGNet()

        for p in VGG.parameters():
            p.requires_grad = False

        print("Load the VGG model")
        VGG.eval()

        image_encoder = CNN_ENCODER(cfg.TEXT.EMBEDDING_DIM)
        img_encoder_path = cfg.TRAIN.NET_E.replace('text_encoder',
                                                   'image_encoder')
        state_dict = \
            torch.load(img_encoder_path, map_location=lambda storage, loc: storage)
        image_encoder.load_state_dict(state_dict)
        for p in image_encoder.parameters():
            p.requires_grad = False
        print('Load image encoder from:', img_encoder_path)
        image_encoder.eval()

        text_encoder = \
            RNN_ENCODER(self.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
        state_dict = \
            torch.load(cfg.TRAIN.NET_E,
                       map_location=lambda storage, loc: storage)
        text_encoder.load_state_dict(state_dict)
        for p in text_encoder.parameters():
            p.requires_grad = False
        print('Load text encoder from:', cfg.TRAIN.NET_E)
        text_encoder.eval()

        if cfg.GAN.B_DCGAN:
            netG = G_DCGAN()
            from model import D_NET256 as D_NET
            netD = D_NET(b_jcu=False)
        else:
            from model import D_NET256
            netG = G_NET()
            netD = D_NET256()

        netD.apply(weights_init)

        state_dict = \
            torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage)
        netG.load_state_dict(state_dict)
        netG.eval()
        print('Load G from: ', cfg.TRAIN.NET_G)

        epoch = 0
        netDCM = DCM_Net()
        if cfg.TRAIN.NET_C != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_C, map_location=lambda storage, loc: storage)
            netDCM.load_state_dict(state_dict)
            print('Load DCM from: ', cfg.TRAIN.NET_C)
            istart = cfg.TRAIN.NET_C.rfind('_') + 1
            iend = cfg.TRAIN.NET_C.rfind('.')
            epoch = cfg.TRAIN.NET_C[istart:iend]
            epoch = int(epoch) + 1

        if cfg.TRAIN.NET_D != '':
            state_dict = \
                torch.load(cfg.TRAIN.NET_D, map_location=lambda storage, loc: storage)
            netD.load_state_dict(state_dict)
            print('Load DCM Discriminator from: ', cfg.TRAIN.NET_D)

        if cfg.CUDA:
            text_encoder = text_encoder.cuda()
            image_encoder = image_encoder.cuda()
            netG.cuda()
            netDCM.cuda()
            VGG = VGG.cuda()
            netD.cuda()
        return [text_encoder, image_encoder, netG, netD, epoch, VGG, netDCM]