from VideoClassification.utils.Logger import Logger

import math

log = Logger("/tmp/runs/r3")

for step in range(100):
    v1 = math.sin(step)
    v2 = math.cos(step)
    v3 = 2000*step
    log.scalar_summary('model2/v1',v1,step)
    log.scalar_summary('model2/v2',v2,step)
    log.scalar_summary('model2/v3',v3,step)

Ejemplo n.º 2
0
from VideoClassification.utils.toolkits import accuracy, try_to_load_state_dict
from VideoClassification.utils.DataSetLoader.PictureQueue import PictureQueue, GenVariables_Spatial, \
    GenVariables_Temporal

'''
VGG TWO Stram 测试:
1. Spatial 输入单张图片, SGD 10个 epoch 每个迭代4000次 
初始学习率0.001, 每个epoch学习率*0.1

2. Temporal 输入连续多20张光流, SGD 20个 epoch 每个迭代5000次
初始学习率0.05 每个epoch学习率*0.5
'''

############ Config

logger = Logger(Config.LOGSpace + Config.EX_ID)
savepath = Config.ExWorkSpace + Config.EX_ID + '/'

import os.path

if os.path.isdir(savepath) == False:
    os.mkdir(savepath)

batchsize = 86


############

def VGG_Temporal_Net_Run():
    epochs = 80
    loops = 2000