Ejemplo n.º 1
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_sentence = self.text_processor(
            {"text": sample_info["sentence"]})

        current_sample.text = processed_sentence["text"]
        if "input_ids" in processed_sentence:
            current_sample.update(processed_sentence)

        if self._use_features is True:
            # Remove sentence id from end
            identifier = "-".join(sample_info["identifier"].split("-")[:-1])
            # Load img0 and img1 features
            sample_info["feature_path"] = "{}-img0.npy".format(identifier)
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.img0 = Sample()
            current_sample.img0.update(features)

            sample_info["feature_path"] = "{}-img1.npy".format(identifier)
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.img1 = Sample()
            current_sample.img1.update(features)

        is_correct = 1 if sample_info["label"] == "True" else 0
        current_sample.targets = torch.tensor(is_correct, dtype=torch.long)

        return current_sample
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        if self._use_features:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])

            if self.config.get("use_image_feature_masks", False):
                current_sample.update({
                    "image_labels":
                    self.masked_region_processor(features["image_feature_0"])
                })

            current_sample.update(features)
        else:
            image_path = str(sample_info["image_name"]) + ".jpg"
            current_sample.image = self.image_db.from_path(
                image_path)["images"][0]

        current_sample = self._add_masked_question(sample_info, current_sample)
        if self._add_answer:
            current_sample = self.add_answer_info(sample_info, current_sample)
        return current_sample
    def __getitem__(self, idx: int) -> Sample:
        sample_info = self.annotation_db[idx]
        current_sample = Sample()
        processed_caption = self.masked_token_processor({
            "text_a":
            sample_info["caption"],
            "text_b":
            "",
            "is_correct":
            True
        })
        current_sample.update(processed_caption)
        current_sample.image_id = sample_info["image_id"]
        current_sample.feature_path = sample_info["feature_path"]

        # Get the image features
        if self._use_features:
            features = self.features_db[idx]
            image_info_0 = features["image_info_0"]
            if image_info_0 and "image_id" in image_info_0.keys():
                image_info_0["feature_path"] = image_info_0["image_id"]
                image_info_0.pop("image_id")
            current_sample.update(features)

        return current_sample
Ejemplo n.º 4
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)
        current_sample = Sample()

        # breaking change from VQA2Dataset: load question_id
        current_sample.question_id = torch.tensor(
            sample_info["question_id"], dtype=torch.int
        )

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = str(sample_info["image_id"])
        else:
            current_sample.image_id = sample_info["image_id"]
        if self._use_features is True:
            features = self.features_db[idx]
            current_sample.update(features)

        current_sample = self.add_sample_details(sample_info, current_sample)
        current_sample = self.add_answer_info(sample_info, current_sample)

        # only the 'max_features' key is needed
        # pop other keys to minimize data loading overhead
        if hasattr(current_sample, "image_info_0"):
            for k in list(current_sample.image_info_0):
                if k != "max_features":
                    current_sample.image_info_0.pop(k)
        if hasattr(current_sample, "image_info_1"):
            for k in list(current_sample.image_info_1):
                if k != "max_features":
                    current_sample.image_info_1.pop(k)

        return current_sample
Ejemplo n.º 5
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self._preprocess_answer(sample_info)
        sample_info["question_id"] = sample_info["id"]
        current_sample = Sample()

        if self._use_features is True:
            features = self.features_db[idx]

            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])

            if self.config.get("use_image_feature_masks", False):
                current_sample.update({
                    "image_labels":
                    self.masked_region_processor(features["image_feature_0"])
                })

            current_sample.update(features)

        current_sample = self._add_masked_question(sample_info, current_sample)
        if self._add_answer:
            current_sample = self.add_answer_info(sample_info, current_sample)

        return current_sample
Ejemplo n.º 6
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)
        current_sample = Sample()

        if self._dataset_type != "test":
            text_processor_argument = {"tokens": sample_info["caption_tokens"]}
            processed_caption = self.text_processor(text_processor_argument)
            current_sample.text = processed_caption["text"]
            current_sample.caption_id = torch.tensor(sample_info["caption_id"],
                                                     dtype=torch.int)
            current_sample.caption_len = torch.tensor(len(
                sample_info["caption_tokens"]),
                                                      dtype=torch.int)

        current_sample.image_id = object_to_byte_tensor(
            sample_info["image_id"])

        if self._use_features:
            features = self.features_db[idx]
            current_sample.update(features)
        else:
            image_path = str(sample_info["image_name"]) + ".jpg"
            current_sample.image = self.image_db.from_path(
                image_path)["images"][0]

        # Add reference captions to sample
        current_sample = self.add_reference_caption(sample_info,
                                                    current_sample)

        return current_sample
Ejemplo n.º 7
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_sentence = self.text_processor(
            {"text": sample_info["sentence2"]})

        current_sample.text = processed_sentence["text"]
        if "input_ids" in processed_sentence:
            current_sample.update(processed_sentence)

        if self._use_features is True:
            # Remove sentence id from end
            identifier = sample_info["Flikr30kID"].split(".")[0]
            # Load img0 and img1 features
            sample_info["feature_path"] = "{}.npy".format(identifier)
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.update(features)

        label = LABEL_TO_INT_MAPPING[sample_info["gold_label"]]
        current_sample.targets = torch.tensor(label, dtype=torch.long)

        return current_sample
Ejemplo n.º 8
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        text_processor_argument = {"text": sample_info["question_str"]}
        processed_question = self.text_processor(text_processor_argument)
        current_sample.text = processed_question["text"]
        if "input_ids" in processed_question:
            current_sample.update(processed_question)

        current_sample.question_id = torch.tensor(sample_info["question_id"],
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(sample_info["image_id"],
                                                   dtype=torch.int)
        else:
            current_sample.image_id = sample_info["image_id"]

        if self._use_features is True:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.update(features)

        # Depending on whether we are using soft copy this can add
        # dynamic answer space
        current_sample = self.add_answer_info(sample_info, current_sample)
        return current_sample
Ejemplo n.º 9
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        sample_info = self.preprocess_sample_info(sample_info)

        current_sample = Sample()

        processed_text = self.text_processor({"text": sample_info["text"]})
        current_sample.text = processed_text["text"]
        if "input_ids" in processed_text:
            current_sample.update(processed_text)

        current_sample.id = torch.tensor(int(sample_info["id"]),
                                         dtype=torch.int)

        # Instead of using idx directly here, use sample_info to fetch
        # the features as feature_path has been dynamically added
        features = self.features_db.get(sample_info)
        if hasattr(self, "transformer_bbox_processor"):
            features["image_info_0"] = self.transformer_bbox_processor(
                features["image_info_0"])
        current_sample.update(features)

        if "label" in sample_info:
            current_sample.targets = torch.tensor(sample_info["label"],
                                                  dtype=torch.long)

        return current_sample
Ejemplo n.º 10
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        if "question_tokens" in sample_info:
            text_processor_argument = {
                "tokens": sample_info["question_tokens"],
                "text": sample_info["question_str"],
            }
        else:
            text_processor_argument = {"text": sample_info["question"]}

        processed_question = self.text_processor(text_processor_argument)

        current_sample.text = processed_question["text"]
        if "input_ids" in processed_question:
            current_sample.update(processed_question)

        current_sample.question_id = torch.tensor(
            sample_info["question_id"], dtype=torch.int
        )

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(
                sample_info["image_id"], dtype=torch.int
            )
        else:
            current_sample.image_id = sample_info["image_id"]

        if "question_tokens" in sample_info:
            current_sample.text_len = torch.tensor(
                len(sample_info["question_tokens"]), dtype=torch.int
            )

        if self._use_features:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"]
                )
            current_sample.update(features)
        else:
            image_path = sample_info["image_name"] + ".jpg"
            current_sample.image = self.image_db.from_path(image_path)["images"][0]

        # Add details for OCR like OCR bbox, vectors, tokens here
        current_sample = self.add_ocr_details(sample_info, current_sample)
        # Depending on whether we are using soft copy this can add
        # dynamic answer space
        current_sample = self.add_answer_info(sample_info, current_sample)
        return current_sample
    def test_sample_working(self):
        initial = Sample()
        initial.x = 1
        initial["y"] = 2
        # Assert setter and getter
        self.assertEqual(initial.x, 1)
        self.assertEqual(initial["x"], 1)
        self.assertEqual(initial.y, 2)
        self.assertEqual(initial["y"], 2)

        update_dict = {"a": 3, "b": {"c": 4}}

        initial.update(update_dict)
        self.assertEqual(initial.a, 3)
        self.assertEqual(initial["a"], 3)
        self.assertEqual(initial.b.c, 4)
        self.assertEqual(initial["b"].c, 4)
Ejemplo n.º 12
0
    def classify(self, image: ImageType, text: str):
        """Classifies a given image and text in it into Hateful/Non-Hateful.
        Image can be a url or a local path or you can directly pass a PIL.Image.Image
        object. Text needs to be a sentence containing all text in the image.

            >>> from VisualBERT.mmf.models.mmbt import MMBT
            >>> model = MMBT.from_pretrained("mmbt.hateful_memes.images")
            >>> model.classify("some_url", "some_text")
            {"label": 0, "confidence": 0.56}

        Args:
            image (ImageType): Image to be classified
            text (str): Text in the image

        Returns:
            bool: Whether image is hateful (1) or non hateful (0)
        """
        if isinstance(image, str):
            if image.startswith("http"):
                temp_file = tempfile.NamedTemporaryFile()
                download(image,
                         *os.path.split(temp_file.name),
                         disable_tqdm=True)
                image = tv_helpers.default_loader(temp_file.name)
                temp_file.close()
            else:
                image = tv_helpers.default_loader(image)

        text = self.processor_dict["text_processor"]({"text": text})
        image = self.processor_dict["image_processor"](image)

        sample = Sample()
        sample.text = text["text"]
        if "input_ids" in text:
            sample.update(text)

        sample.image = image
        sample_list = SampleList([sample])
        device = next(self.model.parameters()).device
        sample_list = sample_list.to(device)

        output = self.model(sample_list)
        scores = nn.functional.softmax(output["scores"], dim=1)
        confidence, label = torch.max(scores, dim=1)

        return {"label": label.item(), "confidence": confidence.item()}
Ejemplo n.º 13
0
    def __getitem__(self, idx: int) -> Type[Sample]:
        sample_info = self.annotation_db[idx]
        current_sample = Sample()
        processed_question = self.text_processor(
            {"text": sample_info["question"]})
        current_sample.update(processed_question)
        current_sample.id = torch.tensor(int(sample_info["question_id"]),
                                         dtype=torch.int)

        image_path = self.get_image_path(sample_info["image_id"],
                                         sample_info["coco_split"])
        current_sample.image = self.image_db.from_path(image_path)["images"][0]

        if "answers" in sample_info:
            answers = self.answer_processor(
                {"answers": sample_info["answers"]})
            current_sample.targets = answers["answers_scores"]

        return current_sample
Ejemplo n.º 14
0
    def __call__(self, item):
        texts = item["text"]
        if not isinstance(texts, list):
            texts = [texts]

        processed = []
        for idx, text in enumerate(texts):
            sample = Sample()
            processed_text = self.tokenizer({"text": text})
            sample.update(processed_text)
            sample.segment_ids.fill_(idx)
            processed.append(sample)
        # Use SampleList to convert list of tensors to stacked tensors
        processed = SampleList(processed)
        if self.fusion_strategy == "concat":
            processed.input_ids = processed.input_ids.view(-1)
            processed.input_mask = processed.input_mask.view(-1)
            processed.segment_ids = processed.segment_ids.view(-1)
            processed.lm_label_ids = processed.lm_label_ids.view(-1)
        return processed.to_dict()
Ejemplo n.º 15
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()
        plot = sample_info["plot"]
        if isinstance(plot, list):
            plot = plot[0]
        processed_sentence = self.text_processor({"text": plot})

        current_sample.text = processed_sentence["text"]
        if "input_ids" in processed_sentence:
            current_sample.update(processed_sentence)

        if self._use_images is True:
            current_sample.image = self.image_db[idx]["images"][0]

        processed = self.answer_processor({"answers": sample_info["genres"]})
        current_sample.answers = processed["answers"]
        current_sample.targets = processed["answers_scores"]

        return current_sample
Ejemplo n.º 16
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_text = self.text_processor({"text": sample_info["text"]})
        current_sample.text = processed_text["text"]
        if "input_ids" in processed_text:
            current_sample.update(processed_text)

        current_sample.id = torch.tensor(int(sample_info["id"]),
                                         dtype=torch.int)

        # Get the first image from the set of images returned from the image_db
        current_sample.image = self.image_db[idx]["images"][0]

        if "label" in sample_info:
            current_sample.targets = torch.tensor(sample_info["label"],
                                                  dtype=torch.long)

        return current_sample
Ejemplo n.º 17
0
    def __getitem__(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()
        plot = sample_info["plot"]
        if isinstance(plot, list):
            plot = plot[0]
        processed_sentence = self.text_processor({"text": plot})

        current_sample.text = processed_sentence["text"]
        if "input_ids" in processed_sentence:
            current_sample.update(processed_sentence)

        if self._use_features is True:
            features = self.features_db[idx]
            if hasattr(self, "transformer_bbox_processor"):
                features["image_info_0"] = self.transformer_bbox_processor(
                    features["image_info_0"])
            current_sample.update(features)

        processed = self.answer_processor({"answers": sample_info["genres"]})
        current_sample.answers = processed["answers"]
        current_sample.targets = processed["answers_scores"]

        return current_sample
Ejemplo n.º 18
0
    def load_item(self, idx):
        sample_info = self.annotation_db[idx]
        current_sample = Sample()

        processed_caption = self.text_processor(
            {"text": sample_info["captions"][0]})
        current_sample.text = processed_caption["text"]
        current_sample.caption_len = torch.tensor(len(
            processed_caption["text"]),
                                                  dtype=torch.int)

        if isinstance(sample_info["image_id"], int):
            current_sample.image_id = torch.tensor(sample_info["image_id"],
                                                   dtype=torch.int)
        else:
            current_sample.image_id = sample_info["image_id"]

        if self._use_features is True:
            features = self.features_db[idx]
            current_sample.update(features)

        current_sample.answers = torch.stack([processed_caption["text"]])

        return current_sample