Ejemplo n.º 1
0
def predict_test():
    Vnet2d = Vnet2dModule(512,
                          512,
                          channels=1,
                          costname="dice coefficient",
                          inference=True,
                          model_path="log\segmeation\\vnet2d\model\\Vnet2d.pd")
    csvdata = pd.read_csv(
        r'D:\cjq\project\python\TNSCUI2020\dataprocess\segmentationtestdata.csv'
    )
    traindata = csvdata.iloc[:, :].values
    imagedata = traindata[:, 0]
    maskdata = traindata[:, 1]
    iou_values = []
    for i in range(len(imagedata)):
        src_image = cv2.imread(imagedata[i], cv2.IMREAD_GRAYSCALE)
        mask_image = cv2.imread(maskdata[i], cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (512, 512))
        pd_mask_image = Vnet2d.prediction(resize_image / 255.)
        pd_mask_image[pd_mask_image >= 128] = 255
        pd_mask_image[pd_mask_image < 128] = 0
        new_mask_image = cv2.resize(pd_mask_image,
                                    (mask_image.shape[1], mask_image.shape[0]))
        cv2.imwrite(
            "E:\MedicalData\TNSCUI2020\TNSCUI2020_train\\" + str(i) +
            "image.bmp", src_image)
        cv2.imwrite(
            "E:\MedicalData\TNSCUI2020\TNSCUI2020_train\\" + str(i) +
            "mask.bmp", mask_image)
        cv2.imwrite(
            "E:\MedicalData\TNSCUI2020\TNSCUI2020_train\\" + str(i) +
            "pdmask.bmp", new_mask_image)
        iou_value = calcu_iou(mask_image, new_mask_image, 255)
        iou_values.append(iou_value)
    print("mean iou:", np.mean(iou_values))
Ejemplo n.º 2
0
def predict_testzch():
    Vnet2d = Vnet2dModule(
        512,
        512,
        channels=1,
        costname="dice coefficient",
        inference=True,
        model_path="log/segmeation/vnet2d_author/model/Vnet2d.pd")
    test_image_path = os.path.abspath('../..') + r"\1_or_data\image"
    test_gt_path = os.path.abspath('../..') + r"\1_or_data\mask"
    test_mask_path = os.path.abspath('../..') + r"\Vnet\test\mask"
    id_list = 'dataprocess/train_valid_test_id.xlsx'
    data_xlsx = xlrd.open_workbook(id_list)
    # 获取test集合
    table_test = data_xlsx.sheet_by_name('test')
    fold_id_test = [
        table_test.cell_value(i, 0) + '.bmp'
        for i in range(1, table_test.nrows)
    ]
    print(fold_id_test)
    print(len(fold_id_test))
    # counter = 0
    all_iou = []
    for imagefile in fold_id_test:
        imagefilepath = os.path.join(test_image_path, imagefile)
        src_image = cv2.imread(imagefilepath, cv2.IMREAD_GRAYSCALE)
        gtfilepath = os.path.join(test_gt_path, imagefile)
        gt_image = cv2.imread(gtfilepath, cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (512, 512))
        pd_mask_image = Vnet2d.prediction(resize_image / 255.)
        new_mask_image = cv2.resize(pd_mask_image,
                                    (src_image.shape[1], src_image.shape[0]))
        # 计算IOU,先将GT和预测图像化为二值图
        gt_image_iou = (gt_image / 255.).astype(np.float)
        new_mask_image_iou = ((new_mask_image / 255.) > 0.8).astype(np.float)
        IOU = getIOU(gt_image_iou, new_mask_image_iou)
        print(IOU)
        all_iou.append(IOU)
        if IOU < 0.7:
            print(imagefile)
        # counter += 1
        # if counter == 50:
        #     print('我该跳出了')
        #     break

        maskfilepath = os.path.join(test_mask_path, imagefile)
        cv2.imwrite(maskfilepath, new_mask_image)

    mean_iou = np.mean(all_iou)
    print('Mean_iou:', mean_iou)
def train():
    '''
    Preprocessing for dataset
    '''
    # Read  data set (Train data from CSV file)
    csvdata = pd.read_csv('dataprocess\segandclassifydata.csv')
    trainData = csvdata.iloc[:, :].values
    np.random.shuffle(trainData)
    labeldata = trainData[:, 0]
    imagedata = trainData[:, 1]
    maskdata = trainData[:, 2]

    Vnet2d = Vnet2dModule(512, 512, channels=1, costname="dice coefficient")
    Vnet2d.train(imagedata, maskdata, "Vnet2d.pd", "log\\segmeation\\vnet2d\\", 0.001, 0.5, 10, 6)
Ejemplo n.º 4
0
def train():
    '''
    Preprocessing for dataset
    '''
    # Read  data set (Train data from CSV file)
    csvmaskdata = pd.read_csv('PROMISE2012Mask.csv')
    csvimagedata = pd.read_csv('PROMISE2012Image.csv')
    maskdata = csvmaskdata.iloc[:, :].values
    imagedata = csvimagedata.iloc[:, :].values
    # shuffle imagedata and maskdata together
    perm = np.arange(len(csvimagedata))
    np.random.shuffle(perm)
    imagedata = imagedata[perm]
    maskdata = maskdata[perm]

    unet2d = Vnet2dModule(512, 512, channels=1, costname="dice coefficient")
    unet2d.train(imagedata, maskdata, "model\\Vnet2dModule.pd", "log\\", 0.001, 0.5, 100000, 4)
Ejemplo n.º 5
0
def train():
    '''
    Preprocessing for dataset
    '''
    # Read  data set (Train data from CSV file)
    csvdata = pd.read_csv(r'D:\cjq\project\python\TNSCUI2020\dataprocess\segmentationtraindata.csv')
    csvdataaug = pd.read_csv(r'D:\cjq\project\python\TNSCUI2020\dataprocess\segmeatationaugtraindata.csv')
    traindata = csvdata.iloc[:, :].values
    augtraindata = csvdataaug.iloc[:, :].values
    trainData = np.concatenate((traindata, augtraindata), axis=0)
    # shuffle imagedata and maskdata together
    np.random.shuffle(trainData)
    imagedata = trainData[:, 0]
    maskdata = trainData[:, 1]

    Vnet2d = Vnet2dModule(512, 512, channels=1, costname="dice coefficient")
    Vnet2d.train(imagedata, maskdata, "Vnet2d.pd", "log\\segmeation\\vnet2d\\", 0.001, 0.5, 5, 6)
Ejemplo n.º 6
0
def predict_validation():
    '''
    Preprocessing for dataset
    '''
    Vnet2d = Vnet2dModule(512,
                          768,
                          channels=1,
                          costname="dice coefficient",
                          inference=True,
                          model_path="log\segmeation\model\\Vnet2d.pd")
    path = "C:\HC18\\training_set\process\\test\src\\"
    for i in range(990, 999, 1):
        src_image = cv2.imread(path + str(i) + ".bmp", cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (768, 512))
        mask_image = Vnet2d.prediction(resize_image)
        new_mask_image = cv2.resize(mask_image,
                                    (src_image.shape[1], src_image.shape[0]))
        cv2.imwrite(path + str(i) + "mask.bmp", new_mask_image)
Ejemplo n.º 7
0
def predict_test():
    Vnet2d = Vnet2dModule(512,
                          512,
                          channels=1,
                          costname="dice coefficient",
                          inference=True,
                          model_path="log\segmeation\\vnet2d\model\Vnet2d.pd")
    test_image_path = r"E:\MedicalData\TNSCUI2020\TNSCUI2020_test\image"
    test_mask_path = r"E:\MedicalData\TNSCUI2020\TNSCUI2020_test\vnet_mask"
    allimagefiles = os.listdir(test_image_path)
    for imagefile in allimagefiles:
        imagefilepath = os.path.join(test_image_path, imagefile)
        src_image = cv2.imread(imagefilepath, cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (512, 512))
        pd_mask_image = Vnet2d.prediction(resize_image / 255.)
        new_mask_image = cv2.resize(pd_mask_image,
                                    (src_image.shape[1], src_image.shape[0]))
        maskfilepath = os.path.join(test_mask_path, imagefile)
        cv2.imwrite(maskfilepath, new_mask_image)
Ejemplo n.º 8
0
def predict_test():
    Vnet2d = Vnet2dModule(512,
                          768,
                          channels=1,
                          costname="dice coefficient",
                          inference=True,
                          model_path="log\segmeation\model\\Vnet2d.pd")
    test_set_csv = pd.read_csv("C:\HC18\\test_set\\test_set_pixel_size.csv")
    src_test_set = "C:\HC18\\test_set\src\\"
    mask_test_set = "C:\HC18\\test_set\mask\\"
    imagedata = test_set_csv.iloc[:, 0].values
    for i in range(len(imagedata)):
        src_image = cv2.imread(src_test_set + imagedata[i],
                               cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (768, 512))
        mask_image = Vnet2d.prediction(resize_image)
        new_mask_image = cv2.resize(mask_image,
                                    (src_image.shape[1], src_image.shape[0]))
        cv2.imwrite(mask_test_set + imagedata[i], new_mask_image)
Ejemplo n.º 9
0
def predict_test():
    Vnet2d = Vnet2dModule(
        512,
        512,
        channels=1,
        costname="dice coefficient",
        inference=True,
        model_path="log/segmeation/vnet2d6000lr-3-balance/model/Vnet2d.pd")
    test_image_path = os.path.abspath('../..') + r"\Vnet\test\image"
    test_gt_path = os.path.abspath('../..') + r"\1_or_data\mask"
    test_mask_path = os.path.abspath('../..') + r"\Vnet\test\mask"
    print(test_gt_path)
    allimagefiles = os.listdir(test_image_path)
    # counter = 0
    all_iou = []
    for imagefile in allimagefiles:
        imagefilepath = os.path.join(test_image_path, imagefile)
        src_image = cv2.imread(imagefilepath, cv2.IMREAD_GRAYSCALE)
        gtfilepath = os.path.join(test_gt_path, imagefile)
        gt_image = cv2.imread(gtfilepath, cv2.IMREAD_GRAYSCALE)
        resize_image = cv2.resize(src_image, (512, 512))
        pd_mask_image = Vnet2d.prediction(resize_image / 255.)
        new_mask_image = cv2.resize(pd_mask_image,
                                    (src_image.shape[1], src_image.shape[0]))
        # 计算IOU,先将GT和预测图像化为二值图
        gt_image_iou = (gt_image / 255.).astype(np.float)
        new_mask_image_iou = ((new_mask_image / 255.) > 0.8).astype(np.float)
        IOU = getIOU(gt_image_iou, new_mask_image_iou)
        print(IOU)
        all_iou.append(IOU)
        if IOU < 0.7:
            print(imagefile)
        # counter += 1
        # if counter == 50:
        #     print('我该跳出了')
        #     break

        maskfilepath = os.path.join(test_mask_path, imagefile)
        cv2.imwrite(maskfilepath, new_mask_image)

    mean_iou = np.mean(all_iou)
    print('Mean_iou:', mean_iou)
Ejemplo n.º 10
0
def train():
    '''
    Preprocessing for dataset
    '''
    # Read  data set (Train data from CSV file)
    # csvdata = pd.read_csv('dataprocess\segandclassifydata_zch.csv')
    # trainData = csvdata.iloc[:, :].values
    # print(type(trainData))
    # np.random.shuffle(trainData)
    # print(type(trainData))
    # labeldata = trainData[:, 0]
    # imagedata = trainData[:, 1]
    # maskdata = trainData[:, 2]
    # print(imagedata)
    # print(maskdata)

    # 读取测试集
    img_path = 'G:/graduation project/TN-SCUI2020/my_code/1_or_data/image'
    mask_path = 'G:/graduation project/TN-SCUI2020/my_code/1_or_data/mask'
    id_list = 'dataprocess/train_valid_test_id.xlsx'
    data_xlsx = xlrd.open_workbook(id_list)
    # 获取train集合
    table_train = data_xlsx.sheet_by_name('train')
    fold_id_train = [table_train.cell_value(i, 0) for i in range(1, table_train.nrows)]
    train_img_list = get_filelist_frompath_tnscui(img_path, 'bmp', sample_id=fold_id_train)
    train_img_list = np.array(train_img_list)
    np.random.shuffle(train_img_list)
    train_mask_list = np.array([mask_path + sep + i.split(sep)[-1] for i in train_img_list])
    # 获取vlaid集合
    table_valid = data_xlsx.sheet_by_name('valid')
    fold_id_valid = [table_train.cell_value(i, 0) for i in range(1, table_valid.nrows)]
    valid_img_list = get_filelist_frompath_tnscui(img_path, 'bmp', sample_id=fold_id_valid)
    valid_img_list = np.array(valid_img_list)
    np.random.shuffle(valid_img_list)
    valid_mask_list = np.array([mask_path + sep + i.split(sep)[-1] for i in valid_img_list])

    # 拼接train和valid
    train_img_list = np.hstack((train_img_list, valid_img_list))
    train_mask_list = np.hstack((train_mask_list, valid_mask_list))

    Vnet2d = Vnet2dModule(512, 512, channels=1, costname="dice coefficient")
    Vnet2d.train(train_img_list, train_mask_list, "Vnet2d.pd", "log\\segmeation\\vnet2dtest\\", 0.001, 0.5, 10, 3, restore=False, step=6000)
Ejemplo n.º 11
0

def train():
    '''
    Preprocessing for dataset
    '''
    # Read  data set (Train data from CSV file)
    csvmaskdata = pd.read_csv('PROMISE2012Mask.csv')
    csvimagedata = pd.read_csv('PROMISE2012Image.csv')
    maskdata = csvmaskdata.iloc[:, :].values
    imagedata = csvimagedata.iloc[:, :].values
    # shuffle imagedata and maskdata together
    perm = np.arange(len(csvimagedata))
    np.random.shuffle(perm)
    imagedata = imagedata[perm]
    maskdata = maskdata[perm]

    unet2d = Vnet2dModule(512, 512, channels=1, costname="dice coefficient")
    unet2d.train(imagedata, maskdata, "model\\Vnet2dModule.pd", "log\\", 0.001, 0.5, 100000, 4)


def predict():
	image = cv2.imread("1.bmp",0)
    unet2d = Vnet2dModule(512, 512, 1)
    predictvalue = unet2d.prediction("model\\Vnet2dModule.pd", image)
	cv2.imwrite("mask.bmp", predictvalue)


train()
# predict()