Ejemplo n.º 1
0
def plot_frames(PP,
                iom,
                blockid=0,
                load=False,
                eigentransform=False,
                timerange=None,
                view=None,
                path='.'):
    """Plot the wave function for a series of timesteps.

    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    """
    parameters = iom.load_parameters()

    if not parameters["dimension"] == 2:
        print("No wavefunction of two space dimensions, silent return!")
        return

    if PP is None:
        PP = parameters

    if load is True:
        # TODO: Implement reshaping
        raise NotImplementedError("Loading of 2D grids is not implemented")
    else:
        G = BlockFactory().create_grid(PP)

    if eigentransform:
        V = BlockFactory().create_potential(parameters)
        BT = BasisTransformationWF(V)
        BT.set_grid(G)

    WF = WaveFunction(parameters)
    WF.set_grid(G)
    N = WF.get_number_components()

    timegrid = iom.load_wavefunction_timegrid(blockid=blockid)
    if timerange is not None:
        if len(timerange) == 1:
            I = (timegrid == timerange)
        else:
            I = ((timegrid >= timerange[0]) & (timegrid <= timerange[1]))
        if any(I):
            timegrid = timegrid[I]
        else:
            raise ValueError("No valid timestep remains!")

    u, v = G.get_axes()
    u = real(u.reshape(-1))
    v = real(v.reshape(-1))

    # View
    if view is not None:
        if view[0] is None:
            view[0] = u.min()
        if view[1] is None:
            view[1] = u.max()
        if view[2] is None:
            view[2] = v.min()
        if view[3] is None:
            view[3] = v.max()

    for step in timegrid:
        print(" Plotting frame of timestep # {}".format(step))

        # Load the data
        wave = iom.load_wavefunction(blockid=blockid, timestep=step)
        values = [wave[j, ...] for j in range(parameters["ncomponents"])]
        WF.set_values(values)

        # Transform the values to the eigenbasis
        if eigentransform:
            BT.transform_to_eigen(WF)

        Psi = WF.get_values()

        # Plot
        fig = figure()

        for level in range(N):
            # Wavefunction data
            z = Psi[level]
            z = z.reshape(G.get_number_nodes())

            fig.add_subplot(N, 1, level + 1)
            plotcf2d(u, v, z, darken=0.3, limits=view)

        fig.savefig(
            os.path.join(
                path,
                "wavefunction_contour_block_%s_level_%d_timestep_%07d.png" %
                (blockid, level, step)))
        close(fig)
Ejemplo n.º 2
0
def plot_frames(PP,
                iom,
                blockid=0,
                load=False,
                eigentransform=False,
                timerange=None,
                view=None,
                path='.'):
    """Plot the wavepacket for a series of timesteps.

    :param iom: An :py:class:`IOManager` instance providing the simulation data.
    """
    parameters = iom.load_parameters()
    BF = BlockFactory()

    if not parameters["dimension"] == 2:
        print("No two-dimensional wavepacket, silent return!")
        return

    if PP is None:
        PP = parameters

    if load is True:
        # TODO: Implement reshaping
        raise NotImplementedError("Loading of 2D grids is not implemented")
    else:
        G = BF.create_grid(PP)

    if eigentransform:
        V = BF.create_potential(parameters)
        BT = BasisTransformationHAWP(V)

    timegrid = iom.load_wavepacket_timegrid(blockid=blockid)
    if timerange is not None:
        if len(timerange) == 1:
            I = (timegrid == timerange)
        else:
            I = ((timegrid >= timerange[0]) & (timegrid <= timerange[1]))
        if any(I):
            timegrid = timegrid[I]
        else:
            raise ValueError("No valid timestep remains!")

    u, v = G.get_axes()
    u = real(u.reshape(-1))
    v = real(v.reshape(-1))

    # View
    if view is not None:
        if view[0] is None:
            view[0] = u.min()
        if view[1] is None:
            view[1] = u.max()
        if view[2] is None:
            view[2] = v.min()
        if view[3] is None:
            view[3] = v.max()

    for step in timegrid:
        print(" Plotting frame of timestep # {}".format(step))

        HAWP = iom.load_wavepacket(step, blockid=blockid)
        N = HAWP.get_number_components()

        # Transform the values to the eigenbasis
        if eigentransform:
            BT.transform_to_eigen(HAWP)

        psi = HAWP.evaluate_at(G.get_nodes(), prefactor=True, component=0)

        # Plot
        fig = figure()

        for level in range(N):
            z = psi[level]
            z = z.reshape(G.get_number_nodes())

            fig.add_subplot(N, 1, level + 1)
            plotcf2d(u, v, z, darken=0.3, limits=view)

        fig.savefig(
            os.path.join(
                path, "wavepacket_block_%s_level_%d_timestep_%07d.png" %
                (blockid, level, step)))
        close(fig)