import hyper_opt import model_train import score_test #import data_prep from X_obj import HYP_obj grid_path1 = '/home/chengtao/june/grid/lstm/' grid_path2 = '/home/chengtao/june/grid/logr/' hype_path1 = '/home/chengtao/june/hyper/lstm/' hype_path2 = '/home/chengtao/june/hyper/logr/' data_path = '/home/chengtao/june/data/svm_pos/' G1 = HYP_obj(grid_path1) G2 = HYP_obj(grid_path2) G1.set_sequence('seq') G2.set_sequence('utt') X1 = HYP_obj(hype_path1) X2 = HYP_obj(hype_path2) X1.run(grid_path1,data_path) X2.run(grid_path2,data_path) X1.report() X2.report()
best = max(auc_list,key=lambda x: x[0]) with open(output_path+'/dev.info','w') as f: for e in auc_list: f.write(e[1]+' {0:.2f}'.format(e[0])) with open(output_path+'/best.info','w') as f: f.write(best[1]+' {0:.2f}'.format(best[0])) def best_path(path): try: print 'the best model is here' return open(path+'/best.info','r').read().split()[0] except: print 'the model is here' return path def best_hyper(path): return best_path+'/hyper/' def best_model(path): return best_path+'/model/' """ if __name__ == "__main__": parser = argparse.ArgumentParser(description="""trains a nemo model on the training set""") parser.add_argument("--input_path", type=str, default=grid_path, help="input: directory of the grid") parser.add_argument("--data_path", type=str, default=data_path, help="input: directory of the tra/dev data") parser.add_argument("--output_path", type=str, default=hyper_path, help="output: directory of the hyperparameters") args = parser.parse_args() # run(args.input_path, args.data_path, args.output_path) x = HYP_obj(args.output_path) x.run(args.input_path, args.data_path)