#!/opt/local/bin/python # Script generates two toy distributions in 3D (a cube and a hollow torus), # then runs XAMRT on them, plots, writes results to disk. # Note that you'll need to be set up with GNUplot in the expected place to see the plots. # Here's one way to invoke the script from a command line: # PYTHONPATH=`pwd` python examples/toydata1.py # Number of data points to generate in each n = 1000 from numpy import * a = (random.rand(n,3) * 2 + 2).round(2) bpre = random.rand(n, 2) * pi * 2 b = array(map(lambda x: [cos(x[0]) * (cos(x[1])*0.5+1), sin(x[0]) * \ (cos(x[1])*0.5+1), sin(x[1]) * 0.5], bpre)).round(2) + 5 from Xamrt import Xamrt p = Xamrt(a, b, 3, maxdepth=12) p.validate(a,b) p.scatter() p.vecmap(9, False) p.vecmap() p.write('./toydata1_output')
#!/opt/local/bin/python # Like toydata1, but generates planar data in the shape of non-matching Ls: # Number of data points to generate in each n = 1000 from numpy import * apre = random.rand(n,3) for index, row in enumerate(apre): if row[0] < 0.5 and row[1] < 0.5: apre[index] = apre[index-1] a = (apre * [2,2,0] + 2).round(2) bpre = random.rand(n,3) for index, row in enumerate(bpre): if row[0] > 0.5 and row[1] > 0.5: bpre[index] = bpre[index-1] b = (bpre * [2,2,0] + 2).round(2) from Xamrt import Xamrt p = Xamrt(a, b, 3, maxdepth=8) p.vecmap(Inf, False) p.scatter(Inf, False) p.scatter() p.write('./toydata2_output')
#!/opt/local/bin/python # Analyses formant data from JIPA paper by Hawkins & Midgley (see README). # Here's one way to invoke the script from a command line: # PYTHONPATH=`pwd` python examples/formantmap.py apath = "examples/formant_data/hm_grp1.csv" bpath = "examples/formant_data/hm_grp4.csv" from Xamrt import Xamrt p = Xamrt.processcsv(apath, bpath, 2, maxdepth=12, plot=True, prune=0.9)