def RunTradingModelQLearn(ticker: str,
                          startDate: str,
                          durationInYears: int,
                          totalFunds: int,
                          verbose: bool = False,
                          saveHistoryToFile: bool = True,
                          returndailyValues: bool = False):
    Actions = [
        'Hold', 'BuyMarket', 'BuyAgressiveLeve10', 'BuyAgressiveLeve11',
        'BuyAgressiveLeve12', 'SellMarket', 'SellAgressiveLeve10',
        'SellAgressiveLeve11', 'SellAgressiveLeve12'
    ]
    modelName = 'QLearn' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                pass
                #do stuff
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
def RunTradingModelBuyHold(ticker: str,
                           startDate: str,
                           durationInYears: int,
                           totalFunds: int,
                           verbose: bool = False,
                           saveHistoryToFile: bool = True,
                           returndailyValues: bool = False):
    modelName = 'BuyHold' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                if tm.TraunchesAvailable(
                ) and tm.FundsAvailable() > currentPrices.high:
                    tm.PlaceBuy(ticker, currentPrices.low, True)
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
Ejemplo n.º 3
0
def RunModel(modelName: str,
             modelFunction,
             ticker: str,
             startDate: str,
             durationInYears: int,
             totalFunds: int,
             saveHistoryToFile: bool = True,
             returndailyValues: bool = False,
             verbose: bool = False):
    modelName = modelName + '_' + ticker
    tm = TradingModel(modelName=modelName,
                      startingTicker=ticker,
                      startDate=startDate,
                      durationInYears=durationInYears,
                      totalFunds=totalFunds,
                      verbose=verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            modelFunction(tm, ticker)
            if tm.AccountingError():
                print(
                    'Accounting error.  The numbers do not add up correctly.')
                break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetDailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
def RunModel(modelName: str,
             modelFunction,
             ticker: str,
             startDate: str,
             durationInYears: int,
             portfolioSize: int,
             saveHistoryToFile: bool = True,
             returndailyValues: bool = False,
             verbose: bool = False):
    #Performs the logic of the given model over a period of time to evaluate the performance
    modelName = modelName + '_' + ticker
    print('Running model ' + modelName)
    tm = TradingModel(modelName=modelName,
                      startingTicker=ticker,
                      startDate=startDate,
                      durationInYears=durationInYears,
                      totalFunds=portfolioSize,
                      tranchSize=round(portfolioSize / 10),
                      verbose=verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pd.DataFrame()
        else: return portfolioSize
    else:
        while not tm.ModelCompleted():
            modelFunction(tm, ticker)
            tm.ProcessDay()
            if tm.AccountingError():
                print(
                    'Accounting error.  The numbers do not add up correctly.  Terminating model run.',
                    tm.currentDate)
                tm.PositionSummary()
                #tm.PrintPositions()
                break
        cash, asset = tm.Value()
        #print('Ending Value: ', cash + asset, '(Cash', cash, ', Asset', asset, ')')
        tradeCount = len(tm.tradeHistory)
        RecordPerformance(ModelName=modelName,
                          StartDate=startDate,
                          EndDate=tm.currentDate,
                          StartValue=portfolioSize,
                          EndValue=(cash + asset),
                          TradeCount=tradeCount)
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetDailyValue(
            )  #return daily value for model comparisons
        else:
            return tm.CloseModel(
                verbose, saveHistoryToFile
            )  #return simple closing value to view net effect
def RunPriceMomentum(tickerList:list, startDate:str='1/1/1982', durationInYears:int=36, stockCount:int=9, ReEvaluationInterval:int=20, filterOption:int=3, longHistory:int=365, shortHistory:int=90, minPercentGain=0.05, maxVolatility=.12, portfolioSize:int=30000, returndailyValues:bool=False, verbose:bool=False):
	#Choose stockCount stocks with the greatest long term (longHistory days) price appreciation, using different filter options defined in the StockPicker class
	#shortHistory is a shorter time frame (like 90 days) used differently by different filters
	#ReEvaluationInterval is how often to re-evaluate our choices, ideally this should be very short and not matter, otherwise the date selection is biased.
	startDate = ToDate(startDate)
	endDate =  AddDays(startDate, 365 * durationInYears)
	picker = StockPicker(AddDays(startDate, -730), endDate) #Include earlier dates for statistics
	for t in tickerList:
		picker.AddTicker(t)
	tm = TradingModel(modelName='PriceMomentumShort_longHistory_' + str(longHistory) +'_shortHistory_' + str(shortHistory) + '_reeval_' + str(ReEvaluationInterval) + '_stockcount_' + str(stockCount) + '_filter' + str(filterOption) + '_' + str(minPercentGain) + str(maxVolatility), startingTicker='^SPX', startDate=startDate, durationInYears=durationInYears, totalFunds=portfolioSize, tranchSize=portfolioSize/stockCount, verbose=verbose)
	dayCounter = 0
	if not tm.modelReady:
		print('Unable to initialize price history for PriceMomentum date ' + str(startDate))
		return 0
	else:
		while not tm.ModelCompleted():
			currentDate =  tm.currentDate
			if dayCounter ==0:
				print('\n')
				print(currentDate)
				c, a = tm.Value()
				print(tm.modelName, int(c), int(a), int(c+a))
				print('available/buy/sell/long',tm.PositionSummary())
				candidates = picker.GetHighestPriceMomentum(currentDate, longHistoryDays=longHistory, shortHistoryDays=shortHistory, stocksToReturn=stockCount, filterOption=filterOption, minPercentGain=minPercentGain, maxVolatility=maxVolatility)
				AlignPositions(tm=tm, targetPositions=candidates, stockCount=stockCount, allocateByPointValue=False)
			tm.ProcessDay()
			dayCounter+=1
			if dayCounter >= ReEvaluationInterval: dayCounter=0

		cv1 = tm.CloseModel(plotResults=False, saveHistoryToFile=((durationInYears>1) or verbose))
		if returndailyValues:
			return tm.GetDailyValue()
		else:
			return cv1
def RunModel(modelName: str,
             modelFunction,
             ticker: str,
             startDate: str,
             durationInYears: int,
             portfolioSize: int,
             saveHistoryToFile: bool = True,
             returndailyValues: bool = False,
             verbose: bool = False):
    modelName = modelName + '_' + ticker
    tm = TradingModel(modelName=modelName,
                      startingTicker=ticker,
                      startDate=startDate,
                      durationInYears=durationInYears,
                      totalFunds=portfolioSize,
                      verbose=verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pd.DataFrame()
        else: return portfolioSize
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            modelFunction(tm, ticker)
            if tm.AccountingError():
                print(
                    'Accounting error.  The numbers do not add up correctly.  Terminating model run.'
                )
                tm.PositionSummary()
                #tm.PrintPositions()
                break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetDailyValue(
            )  #return daily value for model comparisons
        else:
            return tm.CloseModel(
                verbose, saveHistoryToFile
            )  #return simple closing value to view net effect
def RunTradingModelSeasonal(ticker: str,
                            startDate: str,
                            durationInYears: int,
                            totalFunds: int,
                            verbose: bool = False,
                            saveHistoryToFile: bool = True,
                            returndailyValues: bool = False):
    modelName = 'Seasonal' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            currentPrices = tm.GetPriceSnapshot()
            if not currentPrices == None:
                low = currentPrices.low
                high = currentPrices.high
                m = tm.currentDate.month
                available, buyPending, sellPending, longPositions = tm.GetPositionSummary(
                )
                if m >= 11 or m <= 4:  #Buy if Nov through April, else sell
                    if available > 0 and tm.FundsAvailable() > high:
                        tm.PlaceBuy(ticker, low, True)
                else:
                    if longPositions > 0: tm.PlaceSell(ticker, high, True)
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
def RunBuyHold(ticker: str, startDate:str, durationInYears:int, ReEvaluationInterval:int=20, portfolioSize:int=30000, verbose:bool=False):
	#Baseline model to compare against.  Buy on day one, hold for the duration and then sell
	modelName = 'BuyHold_' + (ticker) + '_' + startDate[-4:]
	tm = TradingModel(modelName=modelName, startingTicker=ticker, startDate=startDate, durationInYears=durationInYears, totalFunds=portfolioSize, tranchSize=portfolioSize/10, verbose=verbose)
	if not tm.modelReady:
		print('Unable to initialize price history for model BuyHold date ' + str(startDate))
		return 0
	else:
		dayCounter =0
		while not tm.ModelCompleted():
			if dayCounter ==0:
				i=0
				while tm.TranchesAvailable() and i < 100: 
					tm.PlaceBuy(ticker=ticker, price=1, marketOrder=True, expireAfterDays=10, verbose=verbose)
					i +=1
			dayCounter+=1
			if dayCounter >= ReEvaluationInterval: dayCounter=0
			tm.ProcessDay()
		cash, asset = tm.Value()
		print('Ending Value: ', cash + asset, '(Cash', cash, ', Asset', asset, ')')
		return tm.CloseModel(plotResults=False, saveHistoryToFile=verbose)	
def RunTradingModelSwingTrend(ticker: str,
                              startDate: str,
                              durationInYears: int,
                              totalFunds: int,
                              verbose: bool = False,
                              saveHistoryToFile: bool = True,
                              returndailyValues: bool = False):
    #Give it a date range, some money, and a stock, it will execute a strategy and return the results
    #minDeviationToTrade = .025
    minActionableSlope = 0.002
    trendState = 'Flat'  #++,--,+-,-+,Flat
    prevTrendState = ''
    trendDuration = 0

    modelName = 'SwingTrend' + '_' + ticker
    tm = TradingModel(modelName, ticker, startDate, durationInYears,
                      totalFunds, verbose)
    if not tm.modelReady:
        print('Unable to initialize price history for model for ' +
              str(startDate))
        if returndailyValues: return pandas.DataFrame()
        else: return totalFunds
    else:
        while not tm.ModelCompleted():
            tm.ProcessDay()
            p = tm.GetPriceSnapshot()
            if not p == None:
                available, buyPending, sellPending, longPositions = tm.GetPositionSummary(
                )
                maxPositions = available + buyPending + sellPending + longPositions
                targetBuy = p.nextDayTarget * (1 + p.fiveDayDeviation / 2)
                targetSell = p.nextDayTarget * (1 - p.fiveDayDeviation / 2)
                if p.longEMASlope >= minActionableSlope and p.shortEMASlope >= minActionableSlope:  #++	Positive trend, 70% long
                    trendState = '++'
                    if p.low > p.channelHigh:  #Over Bought
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell * (1.03), False,
                                         10)
                    elif p.low < p.channelLow:  #Still early
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy, True)
                        if trendDuration > 1 and buyPending < 3:
                            tm.PlaceBuy(ticker, targetBuy, True)
                    else:
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy, False)
                    if buyPending < 5 and longPositions < maxPositions:
                        tm.PlaceBuy(ticker, targetBuy, False)
                elif p.longEMASlope >= minActionableSlope and p.shortEMASlope < minActionableSlope:  #+- Correction or early downturn
                    trendState = '+-'
                    if p.low > p.channelHigh:  #Over Bought, try to get out
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Deep correction
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    else:
                        pass
                elif p.longEMASlope < -minActionableSlope and p.shortEMASlope < -minActionableSlope:  #-- Negative trend, aim for < 30% long
                    trendState = '--'
                    if p.high < p.channelLow:  #Over sold
                        if buyPending < 3 and longPositions < 6:
                            tm.PlaceBuy(ticker, targetBuy * .95, False, 2)
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low, early down or up
                        pass
                    else:
                        if sellPending < 5 and longPositions > 3:
                            tm.PlaceSell(ticker, targetSell, True)
                            if trendDuration > 1:
                                tm.PlaceSell(ticker, targetSell, True)
                    if sellPending < 5 and longPositions > 3:
                        tm.PlaceSell(ticker, targetSell, False, 2)
                        tm.PlaceSell(ticker, targetSell, False, 2)
                elif p.longEMASlope < (
                        -1 * minActionableSlope) and p.shortEMASlope < (
                            -1 *
                            minActionableSlope):  #-+ Bounce or early recovery
                    trendState = '-+'
                    if p.high < p.channelLow:  #Over sold
                        pass
                    elif p.low < p.channelLow and p.high > p.channelLow:  #Straddle Low
                        if sellPending < 3 and longPositions > 3:
                            tm.PlaceSell(ticker, targetSell, False, 3)
                    else:
                        pass
                else:  #flat, aim for 70% long
                    trendState = 'Flat'
                    if p.low > p.channelHigh:  #Over Bought
                        if sellPending < 3 and longPositions > 7:
                            tm.PlaceSell(ticker, targetSell * (1.03), False,
                                         10)
                    elif p.high < p.channelLow:  #Over sold
                        if buyPending < 3 and longPositions < 8:
                            tm.PlaceBuy(ticker, targetBuy, False, 5)
                        if buyPending < 4:
                            tm.PlaceBuy(ticker, targetBuy, False, 5)
                    else:
                        pass
                    if sellPending < 3 and longPositions > 7:
                        tm.PlaceSell(ticker, targetSell, False, 5)
                    if buyPending < 3 and longPositions < maxPositions:
                        tm.PlaceBuy(ticker, targetBuy, False, 5)
                if trendState == prevTrendState:
                    trendDuration = trendDuration + 1
                else:
                    trendDuration = 0
            if tm.AccountingError(): break
        if returndailyValues:
            tm.CloseModel(verbose, saveHistoryToFile)
            return tm.GetdailyValue()  #return daily value
        else:
            return tm.CloseModel(verbose,
                                 saveHistoryToFile)  #return closing value
Ejemplo n.º 10
0
def RunPriceMomentum(tickerList: list,
                     startDate: str = '1/1/1982',
                     durationInYears: int = 36,
                     stockCount: int = 9,
                     ReEvaluationInterval: int = 20,
                     filterOption: int = 3,
                     longHistory: int = 365,
                     shortHistory: int = 90,
                     minPercentGain=0.05,
                     maxVolatility=.12,
                     portfolioSize: int = 30000,
                     returndailyValues: bool = False,
                     verbose: bool = False):
    #Choose the stock with the greatest long term (longHistory days) price appreciation
    #shortHistory is a shorter time frame (like 90 days) used differently by different filters
    #ReEvaluationInterval is how often to re-evaluate our choices, ideally this should be very short and not matter, otherwise the date selection is biased.
    startDate = datetime.datetime.strptime(startDate, '%m/%d/%Y')
    endDate = startDate + datetime.timedelta(days=365 * durationInYears)
    picker = StockPicker(startDate, endDate)
    for t in tickerList:
        picker.AddTicker(t)
    tm = TradingModel(modelName='PriceMomentumShort_longHistory_' +
                      str(longHistory) + '_shortHistory_' + str(shortHistory) +
                      '_reeval_' + str(ReEvaluationInterval) + '_stockcount_' +
                      str(stockCount) + '_filter' + str(filterOption) + '_' +
                      str(minPercentGain) + str(maxVolatility),
                      startingTicker='^SPX',
                      startDate=startDate,
                      durationInYears=durationInYears,
                      totalFunds=portfolioSize,
                      tranchSize=portfolioSize / stockCount,
                      verbose=verbose)
    dayCounter = 0
    if not tm.modelReady:
        print('Unable to initialize price history for PriceMomentum date ' +
              str(startDate))
        return 0
    else:
        while not tm.ModelCompleted():
            currentDate = tm.currentDate
            if dayCounter == 0:
                print('\n')
                print(currentDate)
                c, a = tm.Value()
                print(tm.modelName, int(c), int(a), int(c + a))
                print('available/buy/sell/long', tm.PositionSummary())
                tm.SellAllPositions(currentDate)
                tm.ProcessDay()
                dayCounter += 1
                shortList = picker.GetHighestPriceMomentum(
                    currentDate,
                    longHistoryDays=longHistory,
                    shortHistoryDays=shortHistory,
                    stocksToReturn=stockCount,
                    filterOption=filterOption,
                    minPercentGain=minPercentGain,
                    maxVolatility=maxVolatility)
                shortList = shortList[:stockCount]
                print(shortList)
                if len(shortList) > 0:
                    i = 0
                    ii = 0
                    while tm.TranchesAvailable(
                    ) and i < 100:  #Over long periods 100 will not be enough, 1000 would be better, but 100 also limits the impact of early gains, after a bit you are trading $300K
                        tm.PlaceBuy(ticker=shortList.index[ii],
                                    price=1,
                                    marketOrder=True,
                                    expireAfterDays=10,
                                    verbose=verbose)
                        i += 1
                        ii += 1
                        if ii >= len(shortList): ii = 0
            tm.ProcessDay()
            dayCounter += 1
            if dayCounter >= ReEvaluationInterval: dayCounter = 0

        cv1 = tm.CloseModel(plotResults=False,
                            saveHistoryToFile=((durationInYears > 1)
                                               or verbose))
        if returndailyValues:
            return tm.GetDailyValue()
        else:
            return cv1
Ejemplo n.º 11
0
def RunPriceMomentumBlended(tickerList: list,
                            startDate: str = '1/1/1980',
                            durationInYears: int = 29,
                            stockCount: int = 9,
                            ReEvaluationInterval: int = 20,
                            longHistory: int = 365,
                            shortHistory: int = 90,
                            portfolioSize: int = 30000,
                            returndailyValues: bool = False,
                            verbose: bool = False):
    #Uses blended option for selecting stocks using three different filters
    startDate = datetime.datetime.strptime(startDate, '%m/%d/%Y')
    endDate = startDate + datetime.timedelta(days=365 * durationInYears)
    picker = StockPicker(startDate, endDate)
    for t in tickerList:
        picker.AddTicker(t)
    tm = TradingModel(modelName='PriceMomentum_Blended_longHistory_' +
                      str(longHistory) + '_shortHistory_' + str(shortHistory) +
                      '_reeval_' + str(ReEvaluationInterval) + '_stockcount_' +
                      str(stockCount) + '_filterBlended_134',
                      startingTicker='^SPX',
                      startDate=startDate,
                      durationInYears=durationInYears,
                      totalFunds=portfolioSize,
                      tranchSize=portfolioSize / stockCount,
                      verbose=verbose)
    dayCounter = 0
    if not tm.modelReady:
        print('Unable to initialize price history for PriceMomentum date ' +
              str(startDate))
        return 0
    else:
        while not tm.ModelCompleted():
            currentDate = tm.currentDate
            if dayCounter == 0:
                print('\n')
                print(currentDate)
                c, a = tm.Value()
                print(tm.modelName, int(c), int(a), int(c + a))
                print('available/buy/sell/long', tm.PositionSummary())
                tm.SellAllPositions(currentDate)
                tm.ProcessDay()
                dayCounter += 1
                shortList1 = picker.GetHighestPriceMomentum(
                    currentDate,
                    longHistoryDays=longHistory,
                    shortHistoryDays=shortHistory,
                    stocksToReturn=int(stockCount / 3),
                    filterOption=1)
                shortList2 = picker.GetHighestPriceMomentum(
                    currentDate,
                    longHistoryDays=longHistory,
                    shortHistoryDays=shortHistory,
                    stocksToReturn=int(stockCount / 3),
                    filterOption=2)
                shortList3 = picker.GetHighestPriceMomentum(
                    currentDate,
                    longHistoryDays=longHistory,
                    shortHistoryDays=shortHistory,
                    stocksToReturn=int(stockCount / 3),
                    filterOption=4)
                #shortList3 = picker.GetHighestPriceMomentum(currentDate, longHistoryDays=longHistory, shortHistoryDays=shortHistory, stocksToReturn=int(stockCount/3), filterOption=6, maxVolatility=.12)
                shortList = pd.concat([shortList1, shortList2, shortList3])
                shortList
                print(shortList)
                if len(shortList) > 0:
                    i = 0
                    ii = 0
                    while tm.TranchesAvailable() and i < 100:
                        tm.PlaceBuy(ticker=shortList.index[ii],
                                    price=1,
                                    marketOrder=True,
                                    expireAfterDays=10,
                                    verbose=verbose)
                        i += 1
                        ii += 1
                        if ii >= len(shortList): ii = 0
            tm.ProcessDay()
            dayCounter += 1
            if dayCounter >= ReEvaluationInterval: dayCounter = 0

        cv1 = tm.CloseModel(plotResults=False,
                            saveHistoryToFile=((durationInYears > 1)
                                               or verbose))
        if returndailyValues:
            return tm.GetDailyValue()
        else:
            return cv1