def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. Parameters ---------- func : callable f(x, *args) Function to minimize. x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). args : tuple Extra arguments to pass to function. consargs : tuple Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : Reasonable initial changes to the variables. rhoend : Final accuracy in the optimization (not precisely guaranteed). iprint : {0, 1, 2, 3} Controls the frequency of output; 0 implies no output. maxfun : int Maximum number of function evaluations. Returns ------- x : ndarray The argument that minimises `f`. """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: m = len(cons) except TypeError: if callable(cons): m = 1 cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args def calcfc(x, con): f = func(x, *args) k = 0 for constraints in cons: con[k] = constraints(x, *consargs) k += 1 return f xopt = _cobyla.minimize(calcfc, m=m, x=copy(x0), rhobeg=rhobeg, rhoend=rhoend, iprint=iprint, maxfun=maxfun) return xopt
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum cons -- a sequence of functions that all must be >=0 (a single function if only 1 constraint) args -- extra arguments to pass to function consargs -- extra arguments to pass to constraints (default of None means use same extra arguments as those passed to func). Use () for no extra arguments. rhobeg -- reasonable initial changes to the variables rhoend -- final accuracy in the optimization (not precisely guaranteed) iprint -- controls the frequency of output: 0 (no output),1,2,3 maxfun -- maximum number of function evaluations. Returns: x -- the minimum See also: scikits.openopt, which offers a unified syntax to call this and other solvers fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg -- multivariate local optimizers leastsq -- nonlinear least squares minimizer fmin_l_bfgs_b, fmin_tnc, fmin_cobyla -- constrained multivariate optimizers anneal, brute -- global optimizers fminbound, brent, golden, bracket -- local scalar minimizers fsolve -- n-dimenstional root-finding brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding fixed_point -- scalar fixed-point finder """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: m = len(cons) except TypeError: if callable(cons): m = 1 cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args def calcfc(x, con): f = func(x, *args) k = 0 for constraints in cons: con[k] = constraints(x, *consargs) k += 1 return f xopt = _cobyla.minimize(calcfc, m=m, x=copy(x0), rhobeg=rhobeg, rhoend=rhoend, iprint=iprint, maxfun=maxfun) return xopt
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000, disp=None): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. Parameters ---------- func : callable Function to minimize. In the form func(x, \\*args). x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). Each function takes the parameters `x` as its first argument. args : tuple Extra arguments to pass to function. consargs : tuple Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : Reasonable initial changes to the variables. rhoend : Final accuracy in the optimization (not precisely guaranteed). iprint : {0, 1, 2, 3} Controls the frequency of output; 0 implies no output. Deprecated. disp : {0, 1, 2, 3} Over-rides the iprint interface. Preferred. maxfun : int Maximum number of function evaluations. Returns ------- x : ndarray The argument that minimises `f`. Examples -------- Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:: >>> def objective(x): ... return x[0]*x[1] ... >>> def constr1(x): ... return 1 - (x[0]**2 + x[1]**2) ... >>> def constr2(x): ... return x[1] ... >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7) Normal return from subroutine COBYLA NFVALS = 64 F =-5.000000E-01 MAXCV = 1.998401E-14 X =-7.071069E-01 7.071067E-01 array([-0.70710685, 0.70710671]) The exact solution is (-sqrt(2)/2, sqrt(2)/2). """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: m = len(cons) except TypeError: if callable(cons): m = 1 cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args if disp is not None: iprint = disp def calcfc(x, con): f = func(x, *args) k = 0 for constraints in cons: con[k] = constraints(x, *consargs) k += 1 return f xopt = _cobyla.minimize(calcfc, m=m, x=copy(x0), rhobeg=rhobeg, rhoend=rhoend, iprint=iprint, maxfun=maxfun) return xopt
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000, disp=None): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. This method wraps a FORTRAN implentation of the algorithm. Parameters ---------- func : callable Function to minimize. In the form func(x, \\*args). x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). Each function takes the parameters `x` as its first argument. args : tuple Extra arguments to pass to function. consargs : tuple Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : Reasonable initial changes to the variables. rhoend : Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region. iprint : {0, 1, 2, 3} Controls the frequency of output; 0 implies no output. Deprecated. disp : {0, 1, 2, 3} Over-rides the iprint interface. Preferred. maxfun : int Maximum number of function evaluations. Returns ------- x : ndarray The argument that minimises `f`. Notes ----- This algorithm is based on linear approximations to the objective function and each constraint. We briefly describe the algorithm. Suppose the function is being minimized over k variables. At the jth iteration the algorithm has k+1 points v_1, ..., v_(k+1), an approximate solution x_j, and a radius RHO_j. (i.e. linear plus a constant) approximations to the objective function and constraint functions such that their function values agree with the linear approximation on the k+1 points v_1,.., v_(k+1). This gives a linear program to solve (where the linear approximations of the constraint functions are constrained to be non-negative). However the linear approximations are likely only good approximations near the current simplex, so the linear program is given the further requirement that the solution, which will become x_(j+1), must be within RHO_j from x_j. RHO_j only decreases, never increases. The initial RHO_j is rhobeg and the final RHO_j is rhoend. In this way COBYLA's iterations behave like a trust region algorithm. Additionally, the linear program may be inconsistent, or the approximation may give poor improvement. For details about how these issues are resolved, as well as how the points v_i are updated, refer to the source code or the references below. References ---------- Powell M.J.D. (1994), "A direct search optimization method that models the objective and constraint functions by linear interpolation.", in Advances in Optimization and Numerical Analysis, eds. S. Gomez and J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67 Powell M.J.D. (1998), "Direct search algorithms for optimization calculations", Acta Numerica 7, 287-336 Powell M.J.D. (2007), "A view of algorithms for optimization without derivatives", Cambridge University Technical Report DAMTP 2007/NA03 Examples -------- Minimize the objective function f(x,y) = x*y subject to the constraints x**2 + y**2 < 1 and y > 0:: >>> def objective(x): ... return x[0]*x[1] ... >>> def constr1(x): ... return 1 - (x[0]**2 + x[1]**2) ... >>> def constr2(x): ... return x[1] ... >>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7) Normal return from subroutine COBYLA NFVALS = 64 F =-5.000000E-01 MAXCV = 1.998401E-14 X =-7.071069E-01 7.071067E-01 array([-0.70710685, 0.70710671]) The exact solution is (-sqrt(2)/2, sqrt(2)/2). """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: m = len(cons) except TypeError: if callable(cons): m = 1 cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args if disp is not None: iprint = disp def calcfc(x, con): f = func(x, *args) k = 0 for constraints in cons: con[k] = constraints(x, *consargs) k += 1 return f xopt = _cobyla.minimize(calcfc, m=m, x=copy(x0), rhobeg=rhobeg, rhoend=rhoend, iprint=iprint, maxfun=maxfun) return xopt
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0, rhoend=1e-4, iprint=1, maxfun=1000, disp=None): """ Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. Parameters ---------- func : callable f(x, *args) Function to minimize. x0 : ndarray Initial guess. cons : sequence Constraint functions; must all be ``>=0`` (a single function if only 1 constraint). args : tuple Extra arguments to pass to function. consargs : tuple Extra arguments to pass to constraint functions (default of None means use same extra arguments as those passed to func). Use ``()`` for no extra arguments. rhobeg : Reasonable initial changes to the variables. rhoend : Final accuracy in the optimization (not precisely guaranteed). iprint : {0, 1, 2, 3} Controls the frequency of output; 0 implies no output. Deprecated disp : {0, 1, 2, 3} Over-rides the iprint interface. Preferred. maxfun : int Maximum number of function evaluations. Returns ------- x : ndarray The argument that minimises `f`. """ err = "cons must be a sequence of callable functions or a single"\ " callable function." try: m = len(cons) except TypeError: if callable(cons): m = 1 cons = [cons] else: raise TypeError(err) else: for thisfunc in cons: if not callable(thisfunc): raise TypeError(err) if consargs is None: consargs = args if disp is not None: iprint = disp def calcfc(x, con): f = func(x, *args) k = 0 for constraints in cons: con[k] = constraints(x, *consargs) k += 1 return f xopt = _cobyla.minimize(calcfc, m=m, x=copy(x0), rhobeg=rhobeg, rhoend=rhoend, iprint=iprint, maxfun=maxfun) return xopt