Ejemplo n.º 1
0
 def cand(divisions, orders):
     if len(divisions) == 0:
         assert len(orders) == 1
         return Mesh1D((a, b), (order + orders[0],))
     elif len(divisions) == 1:
         assert len(orders) == 2
         return Mesh1D((a, _fekete.get_x_phys(divisions[0], a, b), b),
                 (order + orders[0], order + orders[1]))
     else:
         raise NotImplementedError()
Ejemplo n.º 2
0
 def cand(divisions, orders):
     if len(divisions) == 0:
         assert len(orders) == 1
         return Mesh1D((a, b), (order + orders[0], ))
     elif len(divisions) == 1:
         assert len(orders) == 2
         return Mesh1D((a, _fekete.get_x_phys(divisions[0], a, b), b),
                       (order + orders[0], order + orders[1]))
     else:
         raise NotImplementedError()
Ejemplo n.º 3
0
    def get_polynomial(self, x, values, a, b):
        """
        Returns the interpolating polynomial's coeffs.

        The len(values) specifies the order and we work in the element <a, b>
        """
        # Note: the version in _fekete is 2.6x faster
        n = len(values)
        A = empty((n, n), dtype="double")
        y = empty((n,), dtype="double")
        assert len(x) == n
        for i in range(n):
            for j in range(n):
                A[i, j] = _fekete.get_x_phys(x[i], a, b)**(n-j-1)
            y[i] = values[i]
        a = solve(A, y)
        return a
Ejemplo n.º 4
0
    def get_polynomial(self, x, values, a, b):
        """
        Returns the interpolating polynomial's coeffs.

        The len(values) specifies the order and we work in the element <a, b>
        """
        # Note: the version in _fekete is 2.6x faster
        n = len(values)
        A = empty((n, n), dtype="double")
        y = empty((n, ), dtype="double")
        assert len(x) == n
        for i in range(n):
            for j in range(n):
                A[i, j] = _fekete.get_x_phys(x[i], a, b)**(n - j - 1)
            y[i] = values[i]
        a = solve(A, y)
        return a