Ejemplo n.º 1
0
    def test_backward_manual_dense_norm(self, adata):
        backward = True
        vk = VelocityKernel(adata,
                            backward=backward).compute_transition_matrix(
                                density_normalize=False)
        ck = ConnectivityKernel(adata,
                                backward=backward).compute_transition_matrix(
                                    density_normalize=False)

        # combine the kernels
        comb = 0.8 * vk + 0.2 * ck
        T_1 = comb.transition_matrix
        conn = _get_neighs(adata, "connectivities")
        T_1 = density_normalization(T_1, conn)
        T_1 = _normalize(T_1)

        transition_matrix(
            adata,
            diff_kernel="sum",
            weight_diffusion=0.2,
            density_normalize=True,
            backward=backward,
        )
        T_2 = adata.uns[_transition(Direction.BACKWARD)]["T"]

        np.testing.assert_allclose(T_1.A, T_2.A, rtol=_rtol)
Ejemplo n.º 2
0
    def test_palantir_differ_dense_norm(self, adata: AnnData):
        conn = _get_neighs(adata, "connectivities")
        n_neighbors = _get_neighs_params(adata)["n_neighbors"]
        pseudotime = adata.obs["latent_time"]

        conn_biased = bias_knn(conn, pseudotime, n_neighbors)
        T_1 = density_normalization(conn_biased, conn)
        T_1 = _normalize(T_1)

        pk = PalantirKernel(adata,
                            time_key="latent_time").compute_transition_matrix(
                                density_normalize=False)
        T_2 = pk.transition_matrix

        assert not np.allclose(T_1.A, T_2.A, rtol=_rtol)