def pollard_pm1(n, B1=100, B2=1000): from _primefac._arith import ispower, gcd, ilog from _primefac._prime import isprime, primegen import six if isprime(n): return n m = ispower(n) if m: return m while True: pg = primegen() q = 2 # TODO: what about other initial values of q? p = six.next(pg) while p <= B1: q, p = pow(q, p ** ilog(B1, p), n), six.next(pg) g = gcd(q - 1, n) if 1 < g < n: return g while p <= B2: q, p = pow(q, p, n), six.next(pg) g = gcd(q - 1, n) if 1 < g < n: return g # These bounds failed. Increase and try again. B1 *= 10 B2 *= 10
def pollardRho_brent(n): from _primefac._arith import gcd from _primefac._prime import isprime from six.moves import xrange from random import randrange if isprime(n): return n g = n while g == n: y, c, m, g, r, q = randrange(1, n), randrange(1, n), randrange(1, n), 1, 1, 1 while g == 1: x, k = y, 0 for _ in xrange(r): y = (y ** 2 + c) % n while k < r and g == 1: ys = y for _ in xrange(min(m, r - k)): y = (y ** 2 + c) % n q = q * abs(x - y) % n g, k = gcd(q, n), k + m r *= 2 if g == n: while True: ys = (ys ** 2 + c) % n g = gcd(abs(x - ys), n) if g > 1: break return g
def ecm(n, B1=10, B2=20): """ TODO: Determine the best defaults for B1 and B2 and the best way to increment them and iters "Modern" ECM using Montgomery curves and an algorithm analogous to the two-phase variant of Pollard's p-1 method TODO: We currently compute the prime lists from the sieve as we need them, but this means that we recompute them at every iteration. While it would not be particularly efficient memory-wise, we might be able to increase time-efficiency by computing the primes we need ahead of time (say once at the beginning and then once each time we increase the bounds) and saving them in lists, and then iterate the inner while loops over those lists. """ from _primefac._arith import ispower, gcd, ilog from _primefac._prime import isprime, primegen from six.moves import xrange from random import randrange import six if isprime(n): return n m = ispower(n) if m: return m iters = 1 while True: for _ in xrange(iters): seed = randrange(6, n) u, v = (seed**2 - 5) % n, 4 * seed % n p = pow(u, 3, n) Q, C = (pow(v - u, 3, n) * (3 * u + v) % n, 4 * p * v % n), (p, pow(v, 3, n)) pg = primegen() p = six.next(pg) while p <= B1: Q, p = _ecmul(p**ilog(B1, p), Q, C, n), six.next(pg) g = gcd(Q[1], n) if 1 < g < n: return g while p <= B2: """ "There is a simple coding trick that can speed up the second stage. Instead of multiplying each prime times Q, we iterate over i from B1 + 1 to B2, adding 2Q at each step; when i is prime, the current Q can be accumulated into the running solution. Again, we defer the calculation of the greatest common divisor until the end of the iteration." TODO: Implement this trick and compare performance. """ Q = _ecmul(p, Q, C, n) g *= Q[1] g %= n p = six.next(pg) g = gcd(g, n) if 1 < g < n: return g # This seed failed. Try again with a new one. # These bounds failed. Increase and try again. B1 *= 3 B2 *= 3 iters *= 2
def williams_pp1(n): from _primefac._arith import ispower, ilog, isqrt, gcd from _primefac._prime import isprime, primegen from six.moves import xrange import itertools if isprime(n): return n m = ispower(n) if m: return m for v in itertools.count(1): for p in primegen(): e = ilog(isqrt(n), p) if e == 0: break for _ in xrange(e): v = mlucas(v, p, n) g = gcd(v - 2, n) if 1 < g < n: return g if g == n: break
def _isprime(n, tb=(3, 5, 7, 11), eb=(2, ), mrb=()): # TODO: more streamlining from _primefac import _arith # tb: trial division basis # eb: Euler's test basis # mrb: Miller-Rabin basis # This test suite's first false positve is unknown but has been shown to # be greater than 2**64. # Infinitely many are thought to exist. if n % 2 == 0 or n < 13 or n == _arith.isqrt(n)**2: # Remove evens, squares, and numbers less than 13 return n in (2, 3, 5, 7, 11) if any(n % p == 0 for p in tb): return n in tb # Trial division for b in eb: # Euler's test if b >= n: continue if not pow(b, n - 1, n) == 1: return False r = n - 1 while r % 2 == 0: r //= 2 c = pow(b, r, n) if c == 1: continue while c != 1 and c != n - 1: c = pow(c, 2, n) if c == 1: return False s, d = pfactor(n) if not sprp(n, 2, s, d): return False if n < 2047: return True # BPSW has two phases: SPRP with base 2 and SLPRP. # We just did the SPRP; now we do the SLPRP: if n >= 3825123056546413051: d = 5 while True: if _arith.gcd(d, n) > 1: p, q = 0, 0 break if _arith.jacobi(d, n) == -1: p, q = 1, (1 - d) // 4 break d = -d - 2 * d // abs(d) if p == 0: return n == d s, t = pfactor(n + 2) u, v, u2, v2, m = 1, p, 1, p, t // 2 k = q while m > 0: u2, v2, q = (u2 * v2) % n, (v2 * v2 - 2 * q) % n, (q * q) % n if m % 2 == 1: u, v = u2 * v + u * v2, v2 * v + u2 * u * d if u % 2 == 1: u += n if v % 2 == 1: v += n u, v, k = (u // 2) % n, (v // 2) % n, (q * k) % n m //= 2 if (u == 0) or (v == 0): return True for _ in xrange(1, s): v, k = (v * v - 2 * k) % n, (k * k) % n if v == 0: return True return False if not mrb: if n < 1373653: mrb = [3] elif n < 25326001: mrb = [3, 5] elif n < 3215031751: mrb = [3, 5, 7] elif n < 2152302898747: mrb = [3, 5, 7, 11] elif n < 3474749660383: mrb = [3, 5, 6, 11, 13] elif n < 341550071728321: # This number is also a false positive for primes(19+1). mrb = [3, 5, 7, 11, 13, 17] elif n < 3825123056546413051: # Also a false positive for primes(31+1). mrb = [3, 5, 7, 11, 13, 17, 19, 23] # Miller-Rabin return all(sprp(n, b, s, d) for b in mrb)
def primefac(n, trial_limit=1000, rho_rounds=42000, verbose=False, methods=(_primefac.pollardRho_brent, _primefac.pollard_pm1, _primefac.williams_pp1, _primefac.ecm, _primefac.mpqs, _primefac.fermat, _primefac.factordb), timeout=60): from _primefac import isprime, isqrt, primegen from random import randrange timeout = timeout - 1 if n < 2: return if isprime(n): yield n return factors, nroot = [], isqrt(n) # Note that we remove factors of 2 whether the user wants to or not. for p in primegen(): if n % p == 0: while n % p == 0: yield p n //= p nroot = isqrt(n) if isprime(n): yield n return if p > nroot: if n != 1: yield n return if p >= trial_limit: break if isprime(n): yield n return if rho_rounds == "inf": factors = [n] while len(factors) != 0: n = min(factors) factors.remove(n) f = _primefac.pollardRho_brent(n) if isprime(f): yield f else: factors.append(f) n //= f if isprime(n): yield n else: factors.append(n) return factors, difficult = [n], [] while len(factors) != 0: rhocount = 0 n = factors.pop() try: g = n while g == n: x, c, g = randrange(1, n), randrange(1, n), 1 y = x while g == 1: if rhocount >= rho_rounds: raise Exception rhocount += 1 x = (x**2 + c) % n y = (y**2 + c) % n y = (y**2 + c) % n g = gcd(x - y, n) # We now have a nontrivial factor g of n. If we took too long to get here, we're actually at the except statement. if isprime(g): yield g else: factors.append(g) n //= g if isprime(n): yield n else: factors.append(n) except Exception: difficult.append( n ) # Factoring n took too long. We'll have multifactor chug on it. factors = difficult while len(factors) != 0: n = min(factors) factors.remove(n) f = multifactor(n, methods=methods, verbose=verbose, timeout=timeout) if isprime(f): yield f else: factors.append(f) n //= f if isprime(n): yield n else: factors.append(n)
def mpqs(n): """ When the bound proves insufficiently large, we throw out all our work and start over. TODO: When this happens, get more data, but don't trash what we already have. TODO: Rewrite to get a few more relations before proceeding to the linear algebra. TODO: When we need to increase the bound, what is the optimal increment? """ from _primefac._arith import ispower, isqrt, ilog, gcd, mod_sqrt, legendre from _primefac._arith import modinv from _primefac._prime import isprime, nextprime from _primefac._util import listprod, mpz from six.moves import xrange from math import log # Special cases: this function poorly handles primes and perfect powers: m = ispower(n) if m: return m if isprime(n): return n root_2n = isqrt(2 * n) bound = ilog(n**6, 10)**2 # formula chosen by experiment while True: try: prime, mod_root, log_p, num_prime = [], [], [], 0 # find a number of small primes for which n is a quadratic residue p = 2 while p < bound or num_prime < 3: leg = legendre(n % p, p) if leg == 1: prime += [p] # the rhs was [int(mod_sqrt(n, p))]. # If we get errors, put it back. mod_root += [mod_sqrt(n, p)] log_p += [log(p, 10)] num_prime += 1 elif leg == 0: return p p = nextprime(p) x_max = len(prime) * 60 # size of the sieve # maximum value on the sieved range m_val = (x_max * root_2n) >> 1 """ fudging the threshold down a bit makes it easier to find powers of primes as factors as well as partial-partial relationships, but it also makes the smoothness check slower. there's a happy medium somewhere, depending on how efficient the smoothness check is """ thresh = log(m_val, 10) * 0.735 # skip small primes. they contribute very little to the log sum # and add a lot of unnecessary entries to the table instead, fudge # the threshold down a bit, assuming ~1/4 of them pass min_prime = mpz(thresh * 3) fudge = sum(log_p[i] for i, p in enumerate(prime) if p < min_prime) fudge = fudge // 4 thresh -= fudge smooth, used_prime, partial = [], set(), {} num_smooth, num_used_prime, num_partial = 0, 0, 0 num_poly, root_A = 0, isqrt(root_2n // x_max) while num_smooth <= num_used_prime: # find an integer value A such that: # A is =~ sqrt(2*n) // x_max # A is a perfect square # sqrt(A) is prime, and n is a quadratic residue mod sqrt(A) while True: root_A = nextprime(root_A) leg = legendre(n, root_A) if leg == 1: break elif leg == 0: return root_A A = root_A**2 # solve for an adequate B. B*B is a quadratic residue mod n, # such that B*B-A*C = n. this is unsolvable if n is not a # quadratic residue mod sqrt(A) b = mod_sqrt(n, root_A) B = (b + (n - b * b) * modinv(b + b, root_A)) % A C = (B * B - n) // A # B*B-A*C = n <=> C = (B*B-n)//A num_poly += 1 # sieve for prime factors sums, i = [0.0] * (2 * x_max), 0 for p in prime: if p < min_prime: i += 1 continue logp = log_p[i] g = gcd(A, p) inv_A = modinv(A // g, p // g) * g # modular root of the quadratic a, b, k = (mpz(((mod_root[i] - B) * inv_A) % p), mpz(((p - mod_root[i] - B) * inv_A) % p), 0) while k < x_max: if k + a < x_max: sums[k + a] += logp if k + b < x_max: sums[k + b] += logp if k: sums[k - a + x_max] += logp sums[k - b + x_max] += logp k += p i += 1 # check for smooths i = 0 for v in sums: if v > thresh: x, vec, sqr = x_max - i if i > x_max else i, set(), [] # because B*B-n = A*C # (A*x+B)^2 - n = A*A*x*x+2*A*B*x + B*B - n # = A*(A*x*x+2*B*x+C) # gives the congruency # (A*x+B)^2 = A*(A*x*x+2*B*x+C) (mod n) # because A is chosen to be square, it doesn't # need to be sieved sieve_val = (A * x + 2 * B) * x + C if sieve_val < 0: vec, sieve_val = {-1}, -sieve_val for p in prime: while sieve_val % p == 0: if p in vec: """ track perfect sqr facs to avoid sqrting something huge at the end """ sqr += [p] vec ^= {p} sieve_val = mpz(sieve_val // p) if sieve_val == 1: # smooth smooth += [(vec, (sqr, (A * x + B), root_A))] used_prime |= vec elif sieve_val in partial: """ combine two partials to make a (xor) smooth that is, every prime factor with an odd power is in our factor base """ pair_vec, pair_vals = partial[sieve_val] sqr += list(vec & pair_vec) + [sieve_val] vec ^= pair_vec smooth += [(vec, (sqr + pair_vals[0], (A * x + B) * pair_vals[1], root_A * pair_vals[2]))] used_prime |= vec num_partial += 1 else: # save partial for later pairing partial[sieve_val] = (vec, (sqr, A * x + B, root_A)) i += 1 num_smooth, num_used_prime = len(smooth), len(used_prime) used_prime = sorted(list(used_prime)) # set up bit fields for gaussian elimination masks, mask, bitfields = [], 1, [0] * num_used_prime for vec, _ in smooth: masks += [mask] i = 0 for p in used_prime: if p in vec: bitfields[i] |= mask i += 1 mask <<= 1 # row echelon form offset = 0 null_cols = [] for col in xrange(num_smooth): pivot = bitfields[col - offset] & masks[ col] == 0 # This occasionally throws IndexErrors. # TODO: figure out why it throws errors and fix it. for row in xrange(col + 1 - offset, num_used_prime): if bitfields[row] & masks[col]: if pivot: bitfields[col - offset], bitfields[ row], pivot = bitfields[row], bitfields[ col - offset], False else: bitfields[row] ^= bitfields[col - offset] if pivot: null_cols += [col] offset += 1 # reduced row echelon form for row in xrange(num_used_prime): mask = bitfields[row] & -bitfields[row] # lowest set bit for up_row in xrange(row): if bitfields[up_row] & mask: bitfields[up_row] ^= bitfields[row] # check for non-trivial congruencies # TODO: if none exist, check combinations of null space columns... # if _still_ none exist, sieve more values for col in null_cols: all_vec, (lh, rh, rA) = smooth[col] lhs = lh # sieved values (left hand side) rhs = [rh] # sieved values - n (right hand side) rAs = [rA] # root_As (cofactor of lhs) i = 0 for field in bitfields: if field & masks[col]: vec, (lh, rh, rA) = smooth[i] lhs += list(all_vec & vec) + lh all_vec ^= vec rhs += [rh] rAs += [rA] i += 1 factor = gcd(listprod(rAs) * listprod(lhs) - listprod(rhs), n) if 1 < factor < n: return factor except IndexError: pass bound *= 1.2