Ejemplo n.º 1
0
def alltrainDL(
        *args) -> "Matrix< float > **, Matrix< float > **, Vector< int > **":
    """
    alltrainDL(Data< double > * X, bool in_memory, bool return_model, Matrix< double > * m_A, Matrix< double > * m_B, int m_iter, Matrix< double > * D1, Vector< double > * eta_g, SpMatrix< bool > * groups, SpMatrix< bool > * groups_var, Vector< int > * own_variables, Vector< int > * N_own_variables, int num_threads, double tol, bool fixed_step, bool ista, int batch_size, int K, double lambda1, double lambda2, double lambda3, int iter, double t0, constraint_type mode, char * name_regul, bool posAlpha, bool posD, bool expand, constraint_type_D modeD, bool whiten, bool clean, bool verbose, double gamma1, double gamma2, double rho, int iter_updateD, bool stochastic, int modeParam, bool batch, bool log, char * logName) -> Matrix< double >
    alltrainDL(Data< float > * X, bool in_memory, bool return_model, Matrix< float > * m_A, Matrix< float > * m_B, int m_iter, Matrix< float > * D1, Vector< float > * eta_g, SpMatrix< bool > * groups, SpMatrix< bool > * groups_var, Vector< int > * own_variables, Vector< int > * N_own_variables, int num_threads, float tol, bool fixed_step, bool ista, int batch_size, int K, double lambda1, double lambda2, double lambda3, int iter, double t0, constraint_type mode, char * name_regul, bool posAlpha, bool posD, bool expand, constraint_type_D modeD, bool whiten, bool clean, bool verbose, double gamma1, double gamma2, float rho, int iter_updateD, bool stochastic, int modeParam, bool batch, bool log, char * logName) -> Matrix< float > *
    """
    return _spams_wrap.alltrainDL(*args)
Ejemplo n.º 2
0
def alltrainDL(*args):
  """
    alltrainDL(Data<(double)> X, bool in_memory, bool return_model, 
        Matrix<(double)> m_A, Matrix<(double)> m_B, 
        int m_iter, Matrix<(double)> D1, Vector<(double)> eta_g, 
        SpMatrix<(bool)> groups, SpMatrix<(bool)> groups_var, 
        Vector<(int)> own_variables, 
        Vector<(int)> N_own_variables, int num_threads, 
        double tol, bool fixed_step, bool ista, 
        int batch_size, int K, double lambda1, double lambda2, 
        double lambda3, int iter, double t0, 
        constraint_type mode, char name_regul, 
        bool posAlpha, bool posD, bool expand, constraint_type_D modeD, 
        bool whiten, bool clean, bool verbose, 
        double gamma1, double gamma2, double rho, 
        int iter_updateD, bool stochastic, 
        int modeParam, bool batch, bool log, char logName) -> Matrix<(double)>
    alltrainDL(Data<(float)> X, bool in_memory, bool return_model, 
        Matrix<(float)> m_A, Matrix<(float)> m_B, int m_iter, 
        Matrix<(float)> D1, Vector<(float)> eta_g, 
        SpMatrix<(bool)> groups, SpMatrix<(bool)> groups_var, 
        Vector<(int)> own_variables, 
        Vector<(int)> N_own_variables, int num_threads, 
        float tol, bool fixed_step, bool ista, int batch_size, 
        int K, double lambda1, double lambda2, 
        double lambda3, int iter, double t0, 
        constraint_type mode, char name_regul, bool posAlpha, 
        bool posD, bool expand, constraint_type_D modeD, 
        bool whiten, bool clean, bool verbose, 
        double gamma1, double gamma2, float rho, 
        int iter_updateD, bool stochastic, int modeParam, 
        bool batch, bool log, char logName) -> Matrix<(float)>
    """
  return _spams_wrap.alltrainDL(*args)