Ejemplo n.º 1
0
def call_algorithm(method, table):
    solved_table = build_standard_solved_table(table.rows, table.columns)

    time_before = time.time()

    if method == BFS:
        order = build_order(args.order)
        final_node = bfs.search(begin_table=table, solved_table=solved_table, order=order, max_depth=args.max_depth, random_orders=order is None)
    elif method == DFS:
        order = build_order(args.order)
        final_node = dfs.search(begin_table=table, solved_table=solved_table, order=order, max_depth=args.max_depth, random_orders=order is None)
    elif method == IDFS:
        order = build_order(args.order)
        final_node = idfs.search(begin_table=table, solved_table=solved_table, order=order, min_limit=args.min_limit, max_depth=args.max_depth)
    elif method == BEST_FIRST_SEARCH:
        final_node = best_first_search.search(begin_table=table, solved_table=solved_table, heuristic=args.heuristic, max_depth=args.max_depth)
    elif method == A_STAR:
        final_node = a_star.search(begin_table=table, solved_table=solved_table, heuristic=args.heuristic, max_depth=args.max_depth)
    elif method == SMA_STAR:
        final_node = sma_star.search(begin_table=table, solved_table=solved_table, heuristic=args.heuristic, max_depth=args.max_depth, max_memory=args.max_memory)

    if final_node is None:
        print("Could not find a solution!")
        return

    final_node.table.print()
    print("Solution found in " + str(time.time()-time_before) + 's')

    moves = utils.create_list_of_moves(final_node)
    print("Moves to solve the puzzle: " + str(len(moves)))
    print(utils.convert_moves(moves))
Ejemplo n.º 2
0
def test_1():
    # Grid format:
    #   0 = Navigable space
    #   1 = Occupied space

    grid = [[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0]]

    heuristic = [[9, 8, 7, 6, 5, 4], [8, 7, 6, 5, 4, 3], [7, 6, 5, 4, 3, 2],
                 [6, 5, 4, 3, 2, 1], [5, 4, 3, 2, 1, 0]]

    init = [0, 0]
    goal = [len(grid) - 1, len(grid[0]) - 1]
    cost = 1

    expand = search(grid, init, goal, cost, heuristic)

    print('--------------------------------------------')
    for row in expand:
        print(row)
    print('--------------------------------------------')

    assert expand == [[0, -1, -1, -1, -1, -1], [1, -1, -1, -1, -1, -1],
                      [2, -1, -1, -1, -1, -1], [3, -1, 8, 9, 10, 11],
                      [4, 5, 6, 7, -1, 12]]
Ejemplo n.º 3
0
 def __init__(self, width, height):
     super().__init__(width, height)
     arcade.set_background_color(arcade.color.BLACK)
     self.set_update_rate(1/10)
     self.shape_list = None   
     *_, self.final_state = search(grid, heuristic, init, goal, cost)
     self.path = get_extended_path(get_grid_path(self.final_state['path']))
     self.smooth_path = deepcopy(self.path)
     self.change = 1
     self.weight_data = 0.02
     self.weight_smooth = 0.4
     self.tolerance = 0.000001
Ejemplo n.º 4
0
 def __init__(self, grid, width, height):
     super().__init__(width, height)
     arcade.set_background_color(arcade.color.BLACK)
     self.set_update_rate(1/2)
     self.shape_list = None
     self.grid = grid
     self.turtle_center = [
         MARGIN + WIDTH // 2,
         (MARGIN + HEIGHT) * (ROW_COUNT - 1) + MARGIN + HEIGHT // 2
     ]
     self.turtle = self.create_turtle(self.turtle_center[0], self.turtle_center[1])
     self.path = search(grid, heuristic, init, goal, cost)
     self.visited = []
     self.recreate_grid()
Ejemplo n.º 5
0
 def connect_gates(self, gates):
     ''' Find the shortest path for a pair of gates.
         input:
             gates: tuple of gates to be connected
         returns:
             best: the shortest available path
     '''
     best = []
     n1 = a_star.node_neighbors(self, self.gates[gates[0]])
     n2 = a_star.node_neighbors(self, self.gates[gates[1]])
     for neighbor_1 in n1:
         for neighbor_2 in n2:
             path = a_star.search(neighbor_1, neighbor_2, self)
             if path != False and best == []:
                 best = path
                 continue
             if path != False and len(path) < len(best):
                 best = path
     return best
Ejemplo n.º 6
0
def main():

    raw_start = input(
        "Enter your starting coordinate: Example: 0,0 for X = 0 and Y = 0\n"
    ).split(',')
    start = (int(raw_start[0]), int(raw_start[1]))

    raw_goal = input(
        "Enter your goal coordinate: Example: 9,8 for X = 9 and Y = 8\n"
    ).split(',')
    goal = (int(raw_goal[0]), int(raw_goal[1]))

    grid = input_loader.load_map(input("Enter map name: Example: mapa1\n"))

    # grid = input_loader.load_map('mapa1')
    # start = (0,0)
    # goal = (9, 8)
    cost = 1

    path = a_star.search(grid, start, goal, cost)

    print('\nTraveled path: \n', path[1])
    print('\nTraveled path (drawn):')
    [print(i) for i in path[0]]
Ejemplo n.º 7
0
import collections
import sys

import a_star

rules = collections.defaultdict(lambda: [])
for line in sys.stdin:
    if line == "\n":
        break

    left, right = line.strip().split(" => ")
    rules[right].append(left)

molecule = sys.stdin.readline().strip()

def neighbors(node):
    for i in range(len(node)):
        for k, vs in rules.items():
            if node[i:i+len(k)] == k:
                for v in vs:
                    yield node[:i] + v + node[i+len(k):]

def estimate_cost(node):
    return len(node)

# Perform A* search from the final molecule to "e" using the length of string
# as the heuristic.
path = a_star.search(molecule, "e", neighbors, estimate_cost,
                     progress_callback=lambda x: print(x))
print(len(path) - 1)
for p in producao:
    print(p)

print()

grafo_producao = gerar_grafo(producao)

for name, node in grafo_producao.get_nodes().items():
    for e in node.get_edges():
        print(e)

print()

phrase = 'baba, nao existe: [iXXo], existe: [iXYXYo XaA I@e@@e@O], ba@e@ba ba@e@ba@e@ba@e@ba ba@e@baSba@e@ba ba@e@baSba@e@ba ba@e@baSba@e@ba ba@e@baSba@e@ba'
node_start = data_structure.Node(phrase, 'start')

first_node = a_star.search(grafo_producao, node_start)

node = first_node

while node.get_parent() != None:
    print(node)
    node = node.get_parent()
    if node.get_parent() == None:
        print(node)

print()

# import sys
# if __name__ == '__main__':
Ejemplo n.º 9
0
# Library imports
import sys
import numpy as np

# User defined library imports
from file_read import read_shp, get_values
from grid import create_grid
from a_star import search
from prompt_read import read_search_prompt, read_grid_prompt

# Locate file pats
path = "shape/crime_dt"
# Get data's into data frame
df, bbox = read_shp(path)
# Convert it into numpy array to work with
values = get_values(df, np.float32)
# Get grid configuration from user input
grid_size, threshold = read_grid_prompt()
# Create grid with crime points
grid, fig, ax = create_grid(values,
                            bbox,
                            threshold=threshold,
                            grid_size=grid_size,
                            plot=True)
# Get search start end points from user input
start, end = read_search_prompt(grid)
# Define costs
cost = [1, 1.3, 1.5]
# Search for optimal path
path = search(grid, cost, start, end, [fig, ax])
Ejemplo n.º 10
0
def move():
    data = bottle.request.json
    direction = 'up'

    # TODO: Do things with data
    directions = ['up', 'down', 'left', 'right']
    food_list = data.get('food')

    snakes = data.get('snakes')
    # TODO: Change this so it actually checks if the snake is ours
    for snake in snakes:
        if data.get('you') == snake.get('id'):
            snake_coords = snake.get('coords')
    snake_head = snake_coords[0]
    board_width = data.get('width')
    board_height = data.get('height')

    sorted_list = get_food_list(snake_head, data)
    first_food = sorted_list[0].loc

    primary_path = search(snake_head, data, first_food)
    sec_path = None

    if len(sorted_list) > 1:
        sec_food = sorted_list[1]
        new_list = get_food_list(first_food, data)
        sec_path = search(first_food, data, new_list[0].loc)
        new_path = search(snake_head, data, new_list[0].loc)

    if len(sorted_list) > 1:
        if not primary_path and sec_path:
            primary_path = new_path

    if len(sorted_list) > 1:
        if not sec_path:
            primary_path = search(snake_head, data, sec_food.loc)


    if not primary_path:
        #Desperation Move
        if (if_safe(up(snake_head,1), data)):
            return {
                'move': 'up',
                'taunt': random.choice(taunts),
            }
        if (if_safe(down(snake_head,1), data)):
            return {
                'move': 'down',
                'taunt': random.choice(taunts),
            }
        if (if_safe(left(snake_head,1), data)):
            return {
                'move': 'left',
                'taunt': random.choice(taunts),
            }
        if (if_safe(right(snake_head,1),data)):
            return {
                'move': 'right',
                'taunt': random.choice(taunts),
            }
    else:
        first_move = primary_path[-1]
        if (up(snake_head, 1) == first_move):
            direction = 'up'
        if (down(snake_head, 1) == first_move):
            direction = 'down'
        if (left(snake_head, 1) == first_move):
            direction = 'left'
        if (right(snake_head, 1) == first_move):
            direction = 'right'

    return {
        'move': direction,
        'taunt': random.choice(taunts),
    }