Ds.append(Di) Ys.append(Yi) D = Ds[0] Y = Ys[0] for i,Di in enumerate(Ds[1:]): D = np.vstack( (D,Di) ) Y = np.concatenate( (Y,Ys[i+1]) ) print D.shape print Y.shape print "accuracy per fold is outputted" print "there is a lot of data here, this will take hours" ab_svm.kfoldcv_svm(D,Y,10,cores=1,innerCores=8,useLibLinear=True,useL1R=False) #res=ab_svm.SVMLinear(Dtrain,np.int32(Ytrain),Dtest) #tp=np.sum(res==Ytest) #print 'Accuracy is %.1f%%' % ((np.float64(tp)/Dtest.shape[0])*100) #
pool.join() if args.onlyfeaturize: sys.exit(0) # Step 2: Compute Action Bank Embedding of the Videos # Load the bank itself AB = ActionBank(args.bank) if (args.bankfactor != 1): AB.factor = args.bankfactor # Apply the bank # do not do it asynchronously, as the individual bank elements are done that way for fi,f in enumerate(files): print "\b\b\b\b\b %02d%%" % (100*fi/len(files)) bank_and_save(AB,f,f.replace(args.input,args.output),args.cores) if not args.testsvm: sys.exit(0) # Step 3: Try a k-fold cross-validation classification with an SVM in the simple set-up data set case. import ab_svm (D,Y) = ab_svm.load_simpleone(args.output) ab_svm.kfoldcv_svm(D,Y,10,cores=args.cores) # Nothing else to do here