Ejemplo n.º 1
0
 - user identification (with non walking data) using xgboost

"""

from abraxas4.abraxasFrame import AbraxasFrame
xgbAbra = AbraxasFrame(numIrSensors=10,
                       numFrSensors=2,
                       windowWidth=100,
                       windowShift=25,
                       numCoeffs=5,
                       numFreqs=1,
                       enaStatFeats=True,
                       wavelet='haar',
                       waveletLvl1=False,
                       featNormMethod='stand',
                       trainFraction=0.66,
                       classSortTT=True,
                       randomSortTT=False,
                       lineThresholdAfterNorm=10,
                       enaRawFeats=False,
                       corrPeaks=2)

xgbAbra.loadTeTrDump(dumpName='xgbAbra.pkl')

#from xgboost import XGBClassifier
import xgboost
clf = xgboost.XGBClassifier(max_depth=3, learning_rate=0.4)
xgbAbra.trainClassifier(classifier=clf, supervised=True)
xgbAbra.testClassifier()
Ejemplo n.º 2
0
                label=1)
oc.addDataFiles(fileSourceName="novcc.txt",
                fileSourcePath="../",
                startTime=0,
                stopTime=10000,
                label=1)
oc.addDataFiles(fileSourceName="nowalk.txt",
                fileSourcePath="../",
                startTime=0,
                stopTime=10000,
                label=1)
oc.addDataFiles(fileSourceName="nowalk2.txt",
                fileSourcePath="../",
                startTime=0,
                stopTime=10000,
                label=1)
oc.addDataFiles(fileSourceName="nowalk3.txt",
                fileSourcePath="../",
                startTime=0,
                stopTime=10000,
                label=1)

oc.readDataSet(equalLength=False, checkData=False)
oc.initFeatNormalization()

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()

oc.trainClassifier(classifier=model)
oc.testClassifier()
Ejemplo n.º 3
0
"""

from abraxas4.abraxasFrame import AbraxasFrame

dtAbra = AbraxasFrame(numIrSensors=10,
                      numFrSensors=2,
                      windowWidth=100,
                      windowShift=25,
                      numFreqs=1,
                      numCoeffs=0,
                      enaStatFeats=True,
                      featNormMethod='stand',
                      trainFraction=2 / 3,
                      waveletLvl1=False,
                      randomSortTT=False,
                      classSortTT=True,
                      corrPeaks=0,
                      enaRawFeats=False)

dtAbra.loadTeTrDump(dumpName='dtAbra.pkl')

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(criterion="entropy",
                             max_depth=20,
                             min_samples_leaf=1,
                             min_samples_split=3,
                             max_features=None,
                             max_leaf_nodes=None)
dtAbra.trainClassifier(classifier=clf)
dtAbra.testClassifier()
Ejemplo n.º 4
0
                     className="chris")
gNbAbra.addDataFiles(fileSourceName="chris_pos2.txt", fileSourcePath="../", startTime=100, stopTime=1700, label=2)
gNbAbra.addDataFiles(fileSourceName="chris1.txt", fileSourcePath="../", startTime=500, stopTime=5000, label=2)
gNbAbra.addDataFiles(fileSourceName="chris2.txt", fileSourcePath="../", startTime=1000, stopTime=8600, label=2)
gNbAbra.addDataFiles(fileSourceName="chrisOut.txt", fileSourcePath="../", startTime=1000, stopTime=9000, label=2)
gNbAbra.addDataFiles(fileSourceName="chrisOut2.txt", fileSourcePath="../", startTime=1000, stopTime=4000, label=2)
gNbAbra.addDataFiles(fileSourceName="chrisOut2.txt", fileSourcePath="../", startTime=4250, stopTime=5250, label=2)
gNbAbra.addDataFiles(fileSourceName="chrisOut2.txt", fileSourcePath="../", startTime=6000, stopTime=14000, label=2)
gNbAbra.addDataFiles(fileSourceName="chrisOut2.txt", fileSourcePath="../", startTime=14000, stopTime=22000, label=2)
gNbAbra.addDataFiles(fileSourceName="chris_c.txt", fileSourcePath="../", startTime=100, stopTime=1600, label=3,
                     className="crooked")

gNbAbra.addDataFiles(fileSourceName="ben.txt", fileSourcePath="../", startTime=2000, stopTime=6000, label=4,
                     className="ben")

gNbAbra.addDataFiles(fileSourceName="markus.txt", fileSourcePath="../", startTime=500, stopTime=3300, label=5,
                     className="markus")

gNbAbra.addDataFiles(fileSourceName="igor.txt", fileSourcePath="../", startTime=100, stopTime=2900, label=6,
                     className="igor")
gNbAbra.addDataFiles(fileSourceName="igor2.txt", fileSourcePath="../", startTime=600, stopTime=6000, label=6)

gNbAbra.readDataSet(equalLength=False, checkData=True)

gNbAbra.initFeatNormalization(dumpName="throwAway")
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
gNbAbra.trainClassifier(classifier=clf)
gNbAbra.testClassifier()