Ejemplo n.º 1
0
def start_frame_extraction(team_uuid, video_uuid):
    storage.prepare_to_start_frame_extraction(team_uuid, video_uuid)
    action_parameters = action.create_action_parameters(
        action.ACTION_NAME_FRAME_EXTRACTION)
    action_parameters['team_uuid'] = team_uuid
    action_parameters['video_uuid'] = video_uuid
    action.trigger_action_via_blob(action_parameters)
    return action_parameters
Ejemplo n.º 2
0
def prepare_to_start_tracking(team_uuid, video_uuid, tracker_name, scale,
                              init_frame_number, init_bboxes_text):
    tracker_uuid = storage.tracker_starting(team_uuid, video_uuid,
                                            tracker_name, scale,
                                            init_frame_number,
                                            init_bboxes_text)
    action_parameters = action.create_action_parameters(
        action.ACTION_NAME_TRACKING)
    action_parameters['video_uuid'] = video_uuid
    action_parameters['tracker_uuid'] = tracker_uuid
    action.trigger_action_via_blob(action_parameters)
    return tracker_uuid
Ejemplo n.º 3
0
def prepare_to_zip_dataset():
    team_uuid = team_info.retrieve_team_uuid(flask.session, flask.request)
    data = flask.request.form.to_dict(flat=True)
    dataset_uuid = data.get('dataset_uuid')
    dataset_zip_uuid, partition_count = dataset_zipper.prepare_to_zip_dataset(
        team_uuid, dataset_uuid)
    action_parameters = dataset_zipper.make_action_parameters(
        team_uuid, dataset_uuid, dataset_zip_uuid, partition_count)
    action.trigger_action_via_blob(action_parameters)
    response = {
        'dataset_zip_uuid': dataset_zip_uuid,
        'partition_count': partition_count,
    }
    return flask.jsonify(response)
Ejemplo n.º 4
0
def prepare_to_start_dataset_production():
    team_uuid = team_info.retrieve_team_uuid(flask.session, flask.request)
    data = flask.request.form.to_dict(flat=True)
    description = data.get('description')
    video_uuids_json = data.get('video_uuids')
    eval_percent = int(data.get('eval_percent'))
    create_time_ms = int(data.get('create_time_ms'))
    dataset_uuid = dataset_producer.prepare_to_start_dataset_production(
        team_uuid, description, video_uuids_json, eval_percent, create_time_ms)
    action_parameters = dataset_producer.make_action_parameters(
        team_uuid, dataset_uuid, video_uuids_json, eval_percent, create_time_ms)
    action.trigger_action_via_blob(action_parameters)
    response = {
        'dataset_uuid': dataset_uuid,
    }
    return flask.jsonify(response)
Ejemplo n.º 5
0
def start_training_model():
    team_uuid = team_info.retrieve_team_uuid(flask.session, flask.request)
    data = flask.request.form.to_dict(flat=True)
    description = data.get('description')
    dataset_uuids_json = data.get('dataset_uuids')
    starting_model = data.get('starting_model')
    max_running_minutes = int(data.get('max_running_minutes'))
    num_training_steps = int(data.get('num_training_steps'))
    create_time_ms = int(data.get('create_time_ms'))
    model_entity = model_trainer.start_training_model(team_uuid, description, dataset_uuids_json,
        starting_model, max_running_minutes, num_training_steps, create_time_ms)
    action_parameters = model_trainer.make_action_parameters(team_uuid, model_entity['model_uuid'])
    action.trigger_action_via_blob(action_parameters)
    team_entity = storage.retrieve_team_entity(team_uuid)
    sanitize(model_entity)
    response = {
        'remaining_training_minutes': team_entity['remaining_training_minutes'],
        'model_entity': model_entity,
    }
    return flask.jsonify(response)
Ejemplo n.º 6
0
def zip_dataset(action_parameters):
    team_uuid = action_parameters['team_uuid']
    dataset_zip_uuid = action_parameters['dataset_zip_uuid']
    dataset_uuid = action_parameters['dataset_uuid']
    partition_count = action_parameters['partition_count']

    partition_lists = [[] for i in range(partition_count)]
    dataset_entity = storage.retrieve_dataset_entity(team_uuid, dataset_uuid)
    partition_lists[0].append(dataset_entity['label_map_blob_name'])
    dataset_record_entities = storage.retrieve_dataset_records(dataset_entity)
    for i, dataset_record_entity in enumerate(dataset_record_entities):
        partition_lists[(i + 1) % partition_count].append(dataset_record_entity['tf_record_blob_name'])

    # Trigger actions for the partitions
    action_parameters = action.create_action_parameters(action.ACTION_NAME_DATASET_ZIP_PARTITION)
    action_parameters['team_uuid'] = team_uuid
    action_parameters['dataset_zip_uuid'] = dataset_zip_uuid
    for partition_index, partition_list in enumerate(partition_lists):
        file_count = len(partition_list)
        storage.update_dataset_zipper(team_uuid, dataset_zip_uuid, partition_index, file_count, 0)
        action_parameters['partition_list'] = partition_list
        action_parameters['partition_index'] = partition_index
        action.trigger_action_via_blob(action_parameters)
Ejemplo n.º 7
0
def produce_dataset(action_parameters):
    team_uuid = action_parameters['team_uuid']
    dataset_uuid = action_parameters['dataset_uuid']
    video_uuids_json = action_parameters['video_uuids_json']
    eval_percent = action_parameters['eval_percent']
    create_time_ms = action_parameters['create_time_ms']

    video_uuid_list = json.loads(video_uuids_json)
    if len(video_uuid_list) == 0:
        message = "Error: No videos to process."
        logging.critical(message)
        raise exceptions.HttpErrorBadRequest(message)

    video_entities = storage.retrieve_video_entities(team_uuid,
                                                     video_uuid_list)
    if len(video_entities) != len(video_uuid_list):
        message = 'Error: One or more videos not found for video_uuids=%s.' % video_uuids_json
        logging.critical(message)
        raise exceptions.HttpErrorNotFound(message)

    dict_video_uuid_to_split = {}
    train_frame_count = 0
    train_record_count = 0
    eval_frame_count = 0
    eval_record_count = 0
    label_set = set()

    for video_entity in video_entities:
        video_uuid = video_entity['video_uuid']
        # Read the video_frame entities from storage. They contain the labels.
        video_frame_entities = storage.retrieve_video_frame_entities(
            team_uuid, video_uuid, 0, video_entity['frame_count'] - 1)
        # Determine which frames will be used for training and which frames will be used for eval.
        split = __split_for_records(video_frame_entities, eval_percent)
        dict_video_uuid_to_split[video_uuid] = split
        train_frame_count += split.train_frame_count
        train_record_count += len(split.train_frame_number_lists)
        eval_frame_count += split.eval_frame_count
        eval_record_count += len(split.eval_frame_number_lists)
        label_set.update(split.label_set)

    sorted_label_list = sorted(label_set)
    train_record_id_format = 'train_dataset.record-%05d-%05d'
    train_input_path = 'train_dataset.record-?????-%05d' % train_record_count
    eval_record_id_format = 'eval_dataset.record-%05d-%05d'
    eval_input_path = 'eval_dataset.record-?????-%05d' % eval_record_count

    storage.dataset_producer_starting(team_uuid, dataset_uuid,
                                      sorted_label_list, train_frame_count,
                                      train_record_count, train_input_path,
                                      eval_frame_count, eval_record_count,
                                      eval_input_path)

    record_number = 0
    train_record_number = 0
    eval_record_number = 0

    action_parameters = action.create_action_parameters(
        action.ACTION_NAME_DATASET_PRODUCE_RECORD)
    action_parameters['team_uuid'] = team_uuid
    action_parameters['dataset_uuid'] = dataset_uuid
    action_parameters['sorted_label_list'] = sorted_label_list

    # Trigger actions for the train records
    for video_entity in video_entities:
        video_uuid = video_entity['video_uuid']
        split = dict_video_uuid_to_split[video_uuid]
        action_parameters['video_uuid'] = video_uuid
        for i, train_frame_number_list in enumerate(
                split.train_frame_number_lists):
            action_parameters['frame_number_list'] = train_frame_number_list
            action_parameters['record_number'] = record_number
            action_parameters['record_id'] = train_record_id_format % (
                train_record_number, train_record_count)
            action_parameters['is_eval'] = False
            action.trigger_action_via_blob(action_parameters)
            train_record_number += 1
            record_number += 1

    # Trigger actions for the eval records
    for video_entity in video_entities:
        video_uuid = video_entity['video_uuid']
        split = dict_video_uuid_to_split[video_uuid]
        action_parameters['video_uuid'] = video_uuid
        for i, eval_frame_number_list in enumerate(
                split.eval_frame_number_lists):
            action_parameters['frame_number_list'] = eval_frame_number_list
            action_parameters['record_number'] = record_number
            action_parameters['record_id'] = eval_record_id_format % (
                eval_record_number, eval_record_count)
            action_parameters['is_eval'] = True
            action.trigger_action_via_blob(action_parameters)
            eval_record_number += 1
            record_number += 1