Ejemplo n.º 1
0
def setup_dataset(args, train=True, val=True, test=True):
    temporal_stride_size = args.temporal_stride
    sample_duration = args.sample_duration * temporal_stride_size

    normalization = make_normalization(args)

    train_spatial_transform = [
        Compose([
            Scale(args.sample_size * 8 // 7),
            MultiScaleCrop((args.sample_size, args.sample_size), args.scales),
            # PhotometricDistort(),
            ToTensor(args.norm_value),
            normalization,
        ])
    ]
    if args.hflip:
        train_spatial_transform[0].transforms.insert(1, RandomHorizontalFlip())

    temporal_stride = TemporalStride(temporal_stride_size)
    train_temporal_transform = Compose([
        temporal_stride,
        TemporalRandomCrop(sample_duration / temporal_stride_size)
    ])
    train_target_transform = ClassLabel()
    train_data = make_dataset(args, 'training', train_spatial_transform,
                              train_temporal_transform,
                              train_target_transform) if train else None

    # validation data
    val_spatial_transform = [
        Compose([
            Scale(args.sample_size),
            CenterCrop(args.sample_size),
            ToTensor(args.norm_value), normalization
        ])
    ]
    val_temporal_transform = Compose(
        [temporal_stride,
         LoopPadding(sample_duration / temporal_stride_size)])
    val_target_transform = ClassLabel()
    val_data = make_dataset(args, 'validation', val_spatial_transform,
                            val_temporal_transform,
                            val_target_transform) if val else None

    # test data
    test_spatial_transform = [
        Compose([
            Scale(int(args.sample_size / args.scale_in_test)),
            CornerCrop(args.sample_size, args.crop_position_in_test),
            ToTensor(args.norm_value), normalization
        ])
    ]

    if args.tta:
        test_spatial_transform = []

        for i in range(5):
            test_spatial_transform.append(
                Compose([
                    Scale(int(args.sample_size / args.scale_in_test)),
                    GaussCrop(args.sample_size),
                    ToTensor(args.norm_value), normalization
                ]))
            test_spatial_transform.append(
                Compose([
                    Scale(int(args.sample_size / args.scale_in_test)),
                    GaussCrop(args.sample_size),
                    HorizontalFlip(),
                    ToTensor(args.norm_value), normalization
                ]))

    test_temporal_transform = Compose(
        [temporal_stride,
         LoopPadding(sample_duration / temporal_stride_size)])
    test_target_transform = ClassLabel()

    test_data = make_dataset(args, 'testing', test_spatial_transform,
                             test_temporal_transform,
                             test_target_transform) if test else None

    return train_data, val_data, test_data
Ejemplo n.º 2
0
def setup_dataset(args, train=True, val=True, test=True):
    temporal_stride_size = args.temporal_stride
    sample_duration = args.sample_duration * temporal_stride_size

    normalization = make_normalization(args)

    photometric = []
    if args.photometric:
        photometric = [
            # RandomContrast(),
            RandomSharpness(lower=0.1),
            RandomBrightness(delta=0.75),
            # PhotometricDistort(),
        ]

    train_spatial_transform = [
        Compose([
            Scale(args.sample_size),
            RandomScale(scale_range=args.scales),
            PadIfNeeded((args.sample_size, args.sample_size)),
            MultiScaleCrop(
                (args.sample_size,
                 args.sample_size), scale_ratios=[1.0]) if args.crop == 'fixed'
            else RandomCrop(args.sample_size, mode=args.crop),
            *photometric,
            ToTensor(args.norm_value),
            normalization,
        ])
    ]
    if args.hflip:
        train_spatial_transform[0].transforms.insert(1, RandomHorizontalFlip())
    if args.vflip:
        train_spatial_transform[0].transforms.insert(1, RandomVerticalFlip())

    temporal_stride = TemporalStride(temporal_stride_size)
    train_temporal_transform = Compose([
        temporal_stride,
        TemporalRandomCrop(sample_duration / temporal_stride_size)
    ])
    train_target_transform = ClassLabel()
    train_data = make_dataset(args, 'training', train_spatial_transform,
                              train_temporal_transform,
                              train_target_transform) if train else None

    # validation data
    val_spatial_transform = [
        Compose([
            Scale(args.sample_size),
            CenterCrop(args.sample_size),
            ToTensor(args.norm_value), normalization
        ])
    ]
    val_temporal_transform = Compose(
        [temporal_stride,
         LoopPadding(sample_duration / temporal_stride_size)])
    val_target_transform = ClassLabel()
    val_data = make_dataset(args, 'validation', val_spatial_transform,
                            val_temporal_transform,
                            val_target_transform) if val else None

    # test data
    test_spatial_transform = [
        Compose([
            Scale(int(args.sample_size / args.scale_in_test)),
            CornerCrop(args.sample_size, args.crop_position_in_test),
            ToTensor(args.norm_value), normalization
        ])
    ]

    if args.tta:
        test_spatial_transform = []

        for i in range(5):
            test_spatial_transform.append(
                Compose([
                    Scale(int(args.sample_size / args.scale_in_test)),
                    GaussCrop(args.sample_size),
                    ToTensor(args.norm_value), normalization
                ]))
            test_spatial_transform.append(
                Compose([
                    Scale(int(args.sample_size / args.scale_in_test)),
                    GaussCrop(args.sample_size),
                    HorizontalFlip(),
                    ToTensor(args.norm_value), normalization
                ]))

    test_temporal_transform = Compose(
        [temporal_stride,
         LoopPadding(sample_duration / temporal_stride_size)])
    test_target_transform = ClassLabel()

    test_data = make_dataset(args, 'testing', test_spatial_transform,
                             test_temporal_transform,
                             test_target_transform) if test else None

    return train_data, val_data, test_data