Ejemplo n.º 1
0
 def add_chunk(self, chunk):
     """Adds a chunk to the V Table and generates a V value for it"""
     if (actr.chunk_slot_value(chunk, "kind") == "MEMORY"):
         if actr.chunk_slot_value(chunk, "traumatic") == "NO":
             self.V_TABLE[chunk] = rnd.uniform(0, 2)
         elif actr.chunk_slot_value(chunk, "traumatic") == "YES":
             self.V_TABLE[chunk] = self.currentV
Ejemplo n.º 2
0
def compute_difference():
    c = actr.buffer_read('imaginal')
    n = actr.copy_chunk(c)
    actr.mod_chunk(
        n, 'difference',
        abs(
            actr.chunk_slot_value(c, 'length') -
            actr.chunk_slot_value(c, 'goal-length')))
    return n
Ejemplo n.º 3
0
    def spreading_activation(self, chunk):
        """Calculates spreading activation from imaginal"""
        source = actr.buffer_chunk("imaginal")
        if len(source) > 0:
            source = source[0]
            if (chunk != source):
                kind1 = actr.chunk_slot_value(source, "KIND")
                kind2 = actr.chunk_slot_value(chunk, "KIND")
                if (kind1.upper() == "MEMORY" and kind2.upper() == "MEMORY"):
                    v1 = self.vectorize_memory(source)
                    v2 = self.vectorize_memory(chunk)
                    sim = self.chunk_similarity(source, chunk)
                    w = actr.get_parameter_value(":imaginal-activation")

                    if w is None:
                        w = 0.0

                return sim * w
Ejemplo n.º 4
0
    def monitor_retrievals(self, chunk):
        """Keeps track of what is being retrieved and why"""
        v = 0.0  # Emotional load of retrieved memory
        s = 0.0  # Similarity of memory to current situation
        t = 0.0  # Is the memory traumatic or not?

        if chunk is not None and \
           actr.chunk_slot_value(chunk, "kind") == "MEMORY":
            param_values = []
            for param in sorted(self.model_params.keys()):
                param_values.append(self.model_params[param])

            source = actr.buffer_chunk("imaginal")[0]
            v = self.V_TABLE[chunk]
            s = self.chunk_similarity(chunk, source)
            if actr.chunk_slot_value(chunk, "traumatic") == "YES":
                t = 1.0
            self.TRACE.append([self.counter, self.currentV, actr.mp_time(), v, t, s] + \
                              param_values)
Ejemplo n.º 5
0
def add_to_report(target, chunk):
    global report

    stem = actr.chunk_slot_value(chunk,"stem")
    word = actr.chunk_slot_value(chunk,"verb")
    suffix = actr.chunk_slot_value(chunk,"suffix")
    irreg = (target[2] == 'blank')

    if target[0].lower() == word.lower():
        if stem == word and suffix.lower() == 'ed':
            report.append([irreg,'reg'])
        elif stem == None and suffix == None:
            report.append([irreg,'none'])
        elif stem.lower() == target[1].lower() and suffix.lower() == 'blank':
            report.append([irreg,'irreg'])
        else:
            actr.print_warning(
                "Incorrectly formed verb. Presented %s and produced verb %s,stem %s,suffix %s."%
                (target[0],word,stem,suffx))
    else:
        actr.print_warning(
            "Incorrectly formed verb. Presented %s and produced verb %s,stem %s,suffix %s."%
            (target[0],word,stem,suffx))
        report.append([irreg,'error'])
Ejemplo n.º 6
0
def trial(*features):

    actr.reset()
 
    for slot,value in actr.permute_list(list(zip(slots,features))):
        attribute(slot,value)

    goal = actr.define_chunks(["state","categorize"])[0]
    actr.goal_focus(goal)
    actr.run(20)
    
    answer = actr.chunk_slot_value(actr.buffer_read("imaginal"),"category")

    if isinstance(answer,numbers.Number):
        if answer == 1 or answer == 2:
            return((answer,True))
        else:
            actr.model_output("Model responded with invalid category.")
            return((0,False))
    else:
        actr.model_output("Model did not respond or provided a non-numeric category.")
        return((0,False))
Ejemplo n.º 7
0
def handle_observation(observation):
    '''observation should have chunk format'''

    chunk = actr.define_chunks(observation)
    actr.schedule_simple_event_now("set-buffer-chunk", ['imaginal', chunk[0]])
    actr.run(10)

    d = actr.get_history_data("blending-trace")
    d = json.loads(d)

    t = actr.get_history_data("blending-times")

    MP = actr.get_parameter_value(':mp')
    # #get t
    t = access_by_key('TEMPERATURE', d[0][1])
    # #the values
    # vs = [actr.chunk_slot_value(x,'value') for x in chunk_names]
    #
    factors = [
        'current_altitude', 'view_left', 'view_diagonal_left', 'view_center',
        'view_diagonal_right', 'view_right'
    ]
    # factors = ['needsFood', 'needsWater']
    result_factors = [
        'turn', 'altitude_change', 'diagonal_right_turn', 'right_turn',
        'ascending', 'drop_action'
    ]
    # result_factors = ['food','water']
    results = compute_S(d, factors)  # ,'f3'])
    for sums, result_factor in zip(results, result_factors):
        print("For", result_factor)
        for s, factor in zip(sums, factors):
            print(factor, MP / t * sum(s))

    print("actual value is", actr.chunk_slot_value('OBSERVATION0', 'ACTUAL'))

    print("done")
Ejemplo n.º 8
0
def sentence(person, location, target, term):

    actr.reset()

    if term == 'person':
        actr.pdisable("retrieve-from-location")
    else:
        actr.pdisable("retrieve-from-person")

    actr.mod_chunk("goal", "arg1", person, "arg2", location, "state", "test")

    response_time = actr.run(30)[0]
    response = actr.chunk_slot_value(actr.buffer_read("goal"), "state")

    if target:
        if response.lower() == "'k'".lower():
            return (response_time, True)
        else:
            return (response_time, False)
    else:
        if response.lower() == "'d'".lower():
            return (response_time, True)
        else:
            return (response_time, False)
Ejemplo n.º 9
0
def compute_S(blend_trace, keys_list):
    '''For blend_trace @ time'''
    #probablities
    probs = [
        x[3] for x in access_by_key(
            'MAGNITUDES',
            access_by_key('SLOT-DETAILS', blend_trace[0][1])[0][1])
    ]
    #feature values in probe
    FKs = [
        access_by_key(key.upper(),
                      access_by_key('RESULT-CHUNK', blend_trace[0][1]))
        for key in keys_list
    ]
    chunk_names = [x[0] for x in access_by_key('CHUNKS', blend_trace[0][1])]

    #Fs is all the F values (may or may not be needed for tss)
    #They are organized by chunk, same order as probs
    vjks = []
    for name in chunk_names:
        chunk_fs = []
        for key in keys_list:
            chunk_fs.append(actr.chunk_slot_value(name, key))
        vjks.append(chunk_fs)

    #tss is a list of all the to_sum
    #each to_sum is Pj x dSim(Fs,vjk)/dFk
    #therefore, will depend on your similarity equation
    #in this case, we need max/min of the features because we use them to normalize
    max_val = 4  #max(map(max, zip(*feature_sets)))
    min_val = 1  #min(map(min, zip(*feature_sets)))
    n = max_val - min_val
    n = max_val
    #n = 1
    #this case the derivative is:
    #           Fk > vjk -> -1/n
    #           Fk = vjk -> 0
    #           Fk < vjk -> 1/n
    #compute Tss
    #there should be one for each feature
    #you subtract the sum of each according to (7)
    tss = {}
    ts2 = []
    for i in range(len(FKs)):
        if not i in tss:
            tss[i] = []
        for j in range(len(probs)):
            if FKs[i] > vjks[j][i]:
                dSim = -1 / n
            elif FKs[i] == vjks[j][i]:
                dSim = 0
            else:
                dSim = 1 / n
            tss[i].append(probs[j] * dSim)
        ts2.append(sum(tss[i]))

    #vios
    viosList = []
    viosList.append([actr.chunk_slot_value(x, 'turn') for x in chunk_names])
    viosList.append(
        [actr.chunk_slot_value(x, 'altitude_change') for x in chunk_names])
    viosList.append(
        [actr.chunk_slot_value(x, 'diagonal_right_turn') for x in chunk_names])
    viosList.append(
        [actr.chunk_slot_value(x, 'right_turn') for x in chunk_names])
    viosList.append(
        [actr.chunk_slot_value(x, 'ascending') for x in chunk_names])
    viosList.append(
        [actr.chunk_slot_value(x, 'drop_action') for x in chunk_names])
    #compute (7)
    rturn = []
    for vios in viosList:
        results = []
        for i in range(len(FKs)):
            tmp = 0
            sub = []
            for j in range(len(probs)):
                if FKs[i] > vjks[j][i]:
                    dSim = -1 / n
                elif FKs[i] == vjks[j][i]:
                    dSim = 0
                else:
                    dSim = 1 / n
                tmp = probs[j] * (dSim -
                                  ts2[i]) * vios[j]  #sum(tss[i])) * vios[j]
                sub.append(tmp)
            results.append(sub)

        print("compute S complete")
        rturn.append(results)
    return rturn
def custom_width (feature, angle, x, y):
    actr.model_output("Computing a custom width for feature: %s being approached at angle %s from position %s,%s."%(feature, angle, x, y))
    h = actr.chunk_slot_value(feature, 'height')

    if isinstance(h,numbers.Number):
        return(2 * h)
Ejemplo n.º 11
0
 def vectorize_memory(self, chunk):
     """Returns a vector representation of a chunk"""
     values = [
         actr.chunk_slot_value(chunk, slot) for slot in self.slot_names
     ]
     return tuple([x for x in values if x is not None])