Ejemplo n.º 1
0
style_fname="../input/style/asheville.jpg"
alpha = 1.0


if __name__ == '__main__':
    
    # 1. contents / style images
    c_img = cv2.imread(content_fname)[:,:,::-1]
    s_img = cv2.imread(style_fname)[:,:,::-1]

    # 2. load input imgs
    c_img_prep = preprocess(c_img, (256,256))
    s_img_prep = preprocess(s_img, (256,256))
    
    # 3. encoding
    from adain.encoder import mobile_encoder
    from adain.decoder import combine_and_decode_model
    encoder = mobile_encoder()
    decoder = combine_and_decode_model()
    encoder.load_weights(DEFAULT_ENCODER_H5)
    decoder.load_weights(DEFAULT_DECODER_H5)

    c_features = encoder.predict(c_img_prep)
    s_features = encoder.predict(s_img_prep)

    stylized_imgs = decoder.predict([c_features, s_features])
    stylized_img = stylized_imgs[0].astype(np.uint8)
   
    # 5. plot
    plot([c_img, s_img, stylized_img])
Ejemplo n.º 2
0
    return image

if __name__ == '__main__':
    
    encoder_input = 416
    decoder_input = int(encoder_input/8)
    
    # 1. contents / style images
    c_img = cv2.imread(content_fname)[:,:,::-1]
    s_img = cv2.imread(style_fname)[:,:,::-1]

    # 2. load input imgs
    c_img_prep = preprocess(c_img, (encoder_input,encoder_input))
    s_img_prep = preprocess(s_img, (encoder_input,encoder_input))
    
    # 3. encoding
    encoder = mobile_encoder(input_size=encoder_input)
    mobile_decoder = build_mobile_combine_decoder(decoder_input)
    # mobile_decoder.load_weights("adain/models/h5/mobile_decoder.h5", by_name=True)
    mobile_decoder.load_weights("mobile_decoder.h5", by_name=True)

    c_features = encoder.predict(c_img_prep)
    s_features = encoder.predict(s_img_prep)

    stylized_imgs = mobile_decoder.predict([c_features, s_features])
    print(stylized_imgs.max(), stylized_imgs.min())
    img = postprocess(stylized_imgs[0])

    # 5. plot
    plot([c_img, s_img, img])