Ejemplo n.º 1
0
    def plot_compare_ogp(self, new_ogp, old_ogp, freq, pts=50):

	    """
	    This function plots a comparison between a snap and a fitted sine
	    for two different sets of ogp
  
	    Inputs: 
	    - 'new_ogp' is an array containing measured ogp values,
	    - 'old_ogp' is an array containing current ogp values loaded on ADC5g
	    (if old_ogp = None, will use 0 ogp for all 4 cores),
	    - 'freq' is frequency of input CW tone (in MHz)
	    - 'pts' is for how many points in snap to plot (max 8192)

	    Outputs:
	    -
	    -
	    -
	    """
	    tot_pts = 8192
	    del_phi = 2*math.pi*freq/self.clk #freq in MHz
	    x = [del_phi*i for i in range(tot_pts)]
	    r = np.arange(0, tot_pts*del_phi, del_phi/10.)
	    p0 = [128., 90., 90.]

	    self.syn.set_freq(freq*1e6)

	    self.clear_ogp()
	    time.sleep(0.5)
	    raw_u = adc5g.get_snapshot(self.roach, 'scope_raw_a0_snap')
	    params_u = curve_fit(syn_func, x, raw_u, p0)

	    self.set_ogp(new_ogp, 0, cores=[1,2])
	    time.sleep(0.5)
	    raw_c = adc5g.get_snapshot(self.roach, 'scope_raw_a0_snap')
	    params_c = curve_fit(syn_func, x, raw_c, p0)

	    f_u =  syn_func(r, params_u[0][0], params_u[0][1], params_u[0][2])
	    f_c =  syn_func(r, params_c[0][0], params_c[0][1], params_c[0][2])

	    fig = plt.figure()
	    ax1 = fig.add_subplot(211)
	    ax2 = fig.add_subplot(212)	    
	    
	    ax1.plot(r[:(pts*10)], f_u[:(pts*10)])
	    ax1.plot(x[:pts], raw_u[:pts], 'o', color='r')
	    ax1.set_title('OGP Uncorrected Fit, freq = %d MHz' %freq)

	    ax2.plot(r[:(pts*10)], f_c[:(pts*10)])
            ax2.plot(x[:pts], raw_c[:pts], 'o', color='r')
            ax2.set_title('OGP Corrected Fit, freq = %d MHz' %freq)

	    plt.tight_layout()
	    plt.show()
Ejemplo n.º 2
0
    def plot_compare_ogp(self, new_ogp, old_ogp, freq, pts=50):
        """
	    This function plots a comparison between a snap and a fitted sine
	    for two different sets of ogp
  
	    Inputs: 
	    - 'new_ogp' is an array containing measured ogp values,
	    - 'old_ogp' is an array containing current ogp values loaded on ADC5g
	    (if old_ogp = None, will use 0 ogp for all 4 cores),
	    - 'freq' is frequency of input CW tone (in MHz)
	    - 'pts' is for how many points in snap to plot (max 8192)

	    Outputs:
	    -
	    -
	    -
	    """
        tot_pts = 8192
        del_phi = 2 * math.pi * freq / self.clk  #freq in MHz
        x = [del_phi * i for i in range(tot_pts)]
        r = np.arange(0, tot_pts * del_phi, del_phi / 10.)
        p0 = [128., 90., 90.]

        self.syn.set_freq(freq * 1e6)

        self.clear_ogp()
        time.sleep(0.5)
        raw_u = adc5g.get_snapshot(self.roach, 'scope_raw_a0_snap')
        params_u = curve_fit(syn_func, x, raw_u, p0)

        self.set_ogp(new_ogp, 0, cores=[1, 2])
        time.sleep(0.5)
        raw_c = adc5g.get_snapshot(self.roach, 'scope_raw_a0_snap')
        params_c = curve_fit(syn_func, x, raw_c, p0)

        f_u = syn_func(r, params_u[0][0], params_u[0][1], params_u[0][2])
        f_c = syn_func(r, params_c[0][0], params_c[0][1], params_c[0][2])

        fig = plt.figure()
        ax1 = fig.add_subplot(211)
        ax2 = fig.add_subplot(212)

        ax1.plot(r[:(pts * 10)], f_u[:(pts * 10)])
        ax1.plot(x[:pts], raw_u[:pts], 'o', color='r')
        ax1.set_title('OGP Uncorrected Fit, freq = %d MHz' % freq)

        ax2.plot(r[:(pts * 10)], f_c[:(pts * 10)])
        ax2.plot(x[:pts], raw_c[:pts], 'o', color='r')
        ax2.set_title('OGP Corrected Fit, freq = %d MHz' % freq)

        plt.tight_layout()
        plt.show()
Ejemplo n.º 3
0
def dosnap(fr=0, name="t", rpt = 1, donot_clear=False):
  """
  Takes a snapshot and uses fit_cores to fit a sine function to each
  core separately assuming a CW signal is connected to the input.  The
  offset, gain and phase differences are reoprted for each core as
  well as the average of all four.

  The parameters are:
    fr   The frequency of the signal generator.  It will default to the last
         frequency set by set_freq()
    name the name of the file into which the snapshot is written.  5 other
         files are written.  Name.c1 .. name.c4 contain themeasurements from
	 cores a, b, c and d.  Note that data is taken from cores in the order
	 a, c, b, d.  A line is appended to the file name.fit containing
	 signal freq, average zero, average amplitude followed by triplets
	 of zero, amplitude and phase differences for cores a, b, c and d

    rpt  The number of repeats.  Defaults to 1.  The c1 .. c4 files mentioned
         above are overwritten with each repeat, but new rows of data are added
	 to the .fit file for each pass.
  """
  global freq
  avg_pwr_sinad = 0
  if fr == 0:
    fr = freq
  for i in range(rpt):
    snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    np.savetxt(name, snap,fmt='%d')
    ogp, pwr_sinad = fit_cores.fit_snap(fr, samp_freq, name,\
       clear_avgs = i == 0 and not donot_clear, prnt = i == rpt-1)
    avg_pwr_sinad += pwr_sinad
  return ogp, avg_pwr_sinad/rpt
Ejemplo n.º 4
0
def og_from_noise(fname="ogp.noise", rpt=100):
  """
  Take a number of snapshots of noise.  Analyze for offset and gain
  for each core separately.
  """
  sum_result = np.zeros((15), dtype=float)
  sum_cnt = 0
  for n in range(rpt):
    result = np.zeros((15), dtype=float)
    snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    if(rpt == 1):
      np.savetxt("t.og_noise", snap,fmt='%d')
    l=float(len(snap))
    snap_off=np.sum(snap)/l
    snap_amp=np.sum(abs(snap-snap_off))/l
    result[0]=snap_off*(-500.0/256.0)
    result[1]=snap_amp
    for core in range(4):
      # This will actually sample the cores in the order A,C,B,D
      # index will fix this up when data is put in the result array
      index=(3,9,6,12)[core]
      c=snap[core::4]
      l=float(len(c))
      off=np.sum(c)/l
      result[index] = off*(-500.0/256.0)
      amp=np.sum(abs(c-off))/l
      result[index+1]= 100.0*(snap_amp-amp)/snap_amp
    sum_result += result
    sum_cnt += 1
    print "%.4f "*15 % tuple(result)
  sum_result /= sum_cnt
  print "%.4f "*15 % tuple(sum_result)
  np.savetxt(fname, sum_result[3:], fmt="%8.4f")
Ejemplo n.º 5
0
def dosnap(fr=0, name="t", rpt=1, donot_clear=False):
    """
  Takes a snapshot and uses fit_cores to fit a sine function to each
  core separately assuming a CW signal is connected to the input.  The
  offset, gain and phase differences are reoprted for each core as
  well as the average of all four.

  The parameters are:
    fr   The frequency of the signal generator.  It will default to the last
         frequency set by set_freq()
    name the name of the file into which the snapshot is written.  5 other
         files are written.  Name.c1 .. name.c4 contain themeasurements from
	 cores a, b, c and d.  Note that data is taken from cores in the order
	 a, c, b, d.  A line is appended to the file name.fit containing
	 signal freq, average zero, average amplitude followed by triplets
	 of zero, amplitude and phase differences for cores a, b, c and d

    rpt  The number of repeats.  Defaults to 1.  The c1 .. c4 files mentioned
         above are overwritten with each repeat, but new rows of data are added
	 to the .fit file for each pass.
  """
    global freq
    avg_pwr_sinad = 0
    if fr == 0:
        fr = freq
    for i in range(rpt):
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        np.savetxt(name, snap, fmt='%d')
        ogp, pwr_sinad = fit_cores.fit_snap(fr, samp_freq, name,\
           clear_avgs = i == 0 and not donot_clear, prnt = i == rpt-1)
        avg_pwr_sinad += pwr_sinad
    return ogp, avg_pwr_sinad / rpt
Ejemplo n.º 6
0
def hist_from_snapshots(rpt=10):
    #  hist_all = np.zeros(256,dtype=int)
    hist1 = np.zeros(256, dtype=int)
    hist2 = np.zeros(256, dtype=int)
    hist3 = np.zeros(256, dtype=int)
    hist4 = np.zeros(256, dtype=int)
    for i in range(rpt):
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        snap = 128 + np.array(snap)
        #    hist = np.bincount(snap, minlength=256)
        #    hist_all += hist
        hist = np.bincount(snap[0::4], minlength=256)
        hist1 += hist
        hist = np.bincount(snap[1::4], minlength=256)
        hist2 += hist
        hist = np.bincount(snap[2::4], minlength=256)
        hist3 += hist
        hist = np.bincount(snap[3::4], minlength=256)
        hist4 += hist
    data = np.column_stack((np.arange(-128., 128,
                                      dtype=int), hist1, hist2, hist3, hist4))
    np.savetxt("hist_cores", data, fmt=("%d"))
    #  print "all ",np.sum(hist_all[0:128]), np.sum(hist_all[128:256])
    print "core a  ", np.sum(hist1[0:128]), np.sum(hist1[129:256])
    print "core b  ", np.sum(hist3[0:128]), np.sum(hist3[129:256])
    print "core c  ", np.sum(hist2[0:128]), np.sum(hist2[129:256])
    print "core d  ", np.sum(hist4[0:128]), np.sum(hist4[129:256])
Ejemplo n.º 7
0
def get_rms():
    global zdok

    save_zdok = zdok
    set_zdok(0)
    snap = adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    rmsSnap = np.std(snap)
    loadingFactor = -20.0 * math.log10(128 / rmsSnap)
    print "If0 Rms = %f, loading factor = %f" % (rmsSnap, loadingFactor)
    set_zdok(1)
    snap = adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    rmsSnap = np.std(snap)
    loadingFactor = -20.0 * math.log10(128 / rmsSnap)
    print "If1 Rms = %f, loading factor = %f" % (rmsSnap, loadingFactor)
    if zdok != save_zdok:
        set_zdok(save_zdok)
Ejemplo n.º 8
0
def og_from_noise(fname="ogp.noise", rpt=100):
    """
  Take a number of snapshots of noise.  Analyze for offset and gain
  for each core separately.
  """
    sum_result = np.zeros((15), dtype=float)
    sum_cnt = 0
    for n in range(rpt):
        result = np.zeros((15), dtype=float)
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        l = float(len(snap))
        snap_off = np.sum(snap) / l
        snap_amp = np.sum(abs(snap - snap_off)) / l
        result[0] = snap_off
        result[1] = snap_amp
        for core in range(4):
            # This will actually sample the cores in the order A,C,B,D
            # index will fix this up when data is put in the result array
            index = (3, 9, 6, 12)[core]
            c = snap[core::4]
            l = float(len(c))
            off = np.sum(c) / l
            result[index] = (-off) * 500.0 / 256.0
            #result[index] = (snap_off-off)*500.0/256.0
            amp = np.sum(abs(c - off)) / l
            result[index + 1] = 100.0 * (snap_amp - amp) / snap_amp
        sum_result += result
        sum_cnt += 1
    sum_result /= sum_cnt
    print "%.4f " * 15 % tuple(sum_result)
    np.savetxt(fname, sum_result[3:], fmt="%8.4f")
Ejemplo n.º 9
0
    def levels_hist(self, raw):

        raw = np.array(adc5g.get_snapshot(self.roach, 'scope_raw_a0_snap'),
		       np.int32)

	bins = np.arange(-128.5, 128.5, 1)
	
	th = 32
	lim1 = -th-0.5
	lim2 = -0.5
	lim3 = th-0.5

	ideal_gauss = mlab.normpdf(bins, 0, th)

	plt.subplot(111)
	plt.plot((lim1,lim1), (0,1), 'k--')
	plt.plot((lim2,lim2), (0,1), 'k--')
	plt.plot((lim3,lim3), (0,1), 'k--')
	plt.plot(bins, ideal_gauss, 'gray', linewidth=1)

	plt.hist(raw, bins, normed=1, facecolor='blue', 
		 alpha=0.9, histtype='stepfilled')

	plt.xlim(-129, 128)
	plt.ylim(0, 0.06)
	plt.xlabel('ADC Value')
	plt.ylabel('Normalized Count')
	plt.title('zdok0 levels')
	plt.grid()
	
	plt.show()
Ejemplo n.º 10
0
def get_rms():
  global zdok

  save_zdok = zdok
  set_zdok(0)
  snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
  rmsSnap = np.std(snap)
  loadingFactor = -20.0*math.log10(128/rmsSnap)
  print "If0 Rms = %f, loading factor = %f" % (rmsSnap,loadingFactor)
  set_zdok(1)
  snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
  rmsSnap = np.std(snap)
  loadingFactor = -20.0*math.log10(128/rmsSnap)
  print "If1 Rms = %f, loading factor = %f" % (rmsSnap,loadingFactor)
  if zdok != save_zdok:
    set_zdok(save_zdok)
Ejemplo n.º 11
0
def hist_from_snapshots(rpt = 10):
#  hist_all = np.zeros(256,dtype=int)
  hist1 = np.zeros(256,dtype=int)
  hist2 = np.zeros(256,dtype=int)
  hist3 = np.zeros(256,dtype=int)
  hist4 = np.zeros(256,dtype=int)
  for i in range(rpt):
    snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    snap = 128 + np.array(snap)
#    hist = np.bincount(snap, minlength=256)
#    hist_all += hist
    hist = np.bincount(snap[0:: 4], minlength=256)
    hist1 += hist
    hist = np.bincount(snap[1:: 4], minlength=256)
    hist2 += hist
    hist = np.bincount(snap[2:: 4], minlength=256)
    hist3 += hist
    hist = np.bincount(snap[3:: 4], minlength=256)
    hist4 += hist
  data=np.column_stack((np.arange(-128., 128, dtype=int), hist1, hist2,
      hist3, hist4))
  np.savetxt("hist_cores", data, fmt=("%d"))
#  print "all ",np.sum(hist_all[0:128]), np.sum(hist_all[128:256])
  print "core a  ",np.sum(hist1[0:128]), np.sum(hist1[129:256])
  print "core b  ",np.sum(hist3[0:128]), np.sum(hist3[129:256])
  print "core c  ",np.sum(hist2[0:128]), np.sum(hist2[129:256])
  print "core d  ",np.sum(hist4[0:128]), np.sum(hist4[129:256])
Ejemplo n.º 12
0
 def setUpClass(cls):
     TestBase.setUpClass()
     cls._sample_rate = cls._clk_rate * 2.
     cls._tone_per = int(round(cls._sample_rate / cls._tone_freq))
     cls._raw = adc5g.get_snapshot(cls._roach, 'scope_raw_%d_snap' % cls._zdok_n)
     cls._raw = list(samp/128. for samp in cls._raw)
     cls._bias = (cls._raw[0] + cls._raw[cls._tone_per/2])/2.
     cls._amp = sqrt((cls._raw[0]-cls._bias)**2 + (cls._raw[cls._tone_per/4]-cls._bias)**2)
     cls._phase = atan2((cls._raw[0]-cls._bias)/cls._amp, (cls._raw[125]-cls._bias)/cls._amp)
     cls._fit = list(cls._amp*sin(t*2*pi/cls._tone_per + cls._phase) + cls._bias \
                     for t in range(len(cls._raw)))
Ejemplo n.º 13
0
 def setUpClass(cls):
     TestBase.setUpClass()
     cls._sample_rate = cls._clk_rate * 2.0
     cls._tone_per = int(round(cls._sample_rate / cls._tone_freq))
     cls._raw = adc5g.get_snapshot(cls._roach, "raw_%d" % cls._zdok_n)
     cls._raw = list(samp - 128 for samp in cls._raw)
     cls._bias = (cls._raw[0] + cls._raw[cls._tone_per / 2]) / 2.0
     cls._amp = sqrt((cls._raw[0] - cls._bias) ** 2 + (cls._raw[cls._tone_per / 4] - cls._bias) ** 2)
     cls._phase = atan2((cls._raw[0] - cls._bias) / cls._amp, (cls._raw[125] - cls._bias) / cls._amp)
     cls._fit = list(
         cls._amp * sin(t * 2 * pi / cls._tone_per + cls._phase) + cls._bias for t in range(len(cls._raw))
     )
Ejemplo n.º 14
0
    def get_snap(self, chan, freq):  #MHz
        """
	   Takes a snap shot on channel 'chan' of a cw tone
	   of frequency 'freq' (MHz)
	"""

        if freq != None:

            #		self.syn.output_on()
            self.syn.set_freq(freq * 1e6)
            time.sleep(1)

#	reg = self.get_channel_snap_reg(chan)
        raw = array(adc5g.get_snapshot(self.roach, 'snap%i' % (chan)))

        return raw
Ejemplo n.º 15
0
def dosnap(fr=0, name=None, rpt=1, donot_clear=False, plot=True):
    """
  Takes a snapshot and uses fit_cores to fit a sine function to each
  core separately assuming a CW signal is connected to the input.  The
  offset, gain and phase differences are reoprted for each core as
  well as the average of all four.

  The parameters are:
    fr   The frequency of the signal generator.  It will default to the last
         frequency set by set_freq()
    name the name of the file into which the snapshot is written.  5 other
         files are written.  Name.c1 .. name.c4 contain themeasurements from
	 cores a, b, c and d.  Note that data is taken from cores in the order
	 a, c, b, d.  A line is appended to the file name.fit containing
	 signal freq, average zero, average amplitude followed by triplets
	 of zero, amplitude and phase differences for cores a, b, c and d
	 name defaults to if0 or if1, depending on the current zdok

    rpt  The number of repeats.  Defaults to 1.  The c1 .. c4 files mentioned
         above are overwritten with each repeat, but new rows of data are added
	 to the .fit file for each pass.
  """
    global freq
    if name == None:
        name = "if%d" % (zdok)
    avg_pwr_sinad = 0
    if fr == 0:
        fr = freq
    for i in range(rpt):
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        if (plot):
            plt.clf()
            plt.plot(snap)
            plt.show(block=False)
            rmsSnap = np.std(snap)
            loadingFactor = -20.0 * math.log10(128 / rmsSnap)
            print "Rms = %f, loading factor = %f" % (rmsSnap, loadingFactor)
        if i == rpt - 1:
            np.savetxt(name, snap, fmt='%d')
        ogp, pwr_sinad = fit_cores.fit_snap(snap, fr, samp_freq, name,\
           clear_avgs = ((i == 0) and not donot_clear), prnt = (i == rpt-1))
        avg_pwr_sinad += pwr_sinad
    return ogp, avg_pwr_sinad / rpt
Ejemplo n.º 16
0
    def get_snap(self, chan, freq): #MHz

        """
	   Takes a snap shot on channel 'chan' of a cw tone
	   of frequency 'freq' (MHz)
	"""

#	if freq != None:

#		self.syn.output_on()
#		self.syn.set_freq(freq*1e6)
#		time.sleep(1)

	reg = self.get_channel_snap_reg(chan)
	raw = array(adc5g.get_snapshot(self.roach, reg))

	return raw, freq
Ejemplo n.º 17
0
def dosnap(fr=0, name=None, rpt = 1, donot_clear=False, plot=True):
  """
  Takes a snapshot and uses fit_cores to fit a sine function to each
  core separately assuming a CW signal is connected to the input.  The
  offset, gain and phase differences are reoprted for each core as
  well as the average of all four.

  The parameters are:
    fr   The frequency of the signal generator.  It will default to the last
         frequency set by set_freq()
    name the name of the file into which the snapshot is written.  5 other
         files are written.  Name.c1 .. name.c4 contain themeasurements from
	 cores a, b, c and d.  Note that data is taken from cores in the order
	 a, c, b, d.  A line is appended to the file name.fit containing
	 signal freq, average zero, average amplitude followed by triplets
	 of zero, amplitude and phase differences for cores a, b, c and d
	 name defaults to if0 or if1, depending on the current zdok

    rpt  The number of repeats.  Defaults to 1.  The c1 .. c4 files mentioned
         above are overwritten with each repeat, but new rows of data are added
	 to the .fit file for each pass.
  """
  global freq
  if name == None:
    name = "if%d" % (zdok)
  avg_pwr_sinad = 0
  if fr == 0:
    fr = freq
  for i in range(rpt):
    snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    if(plot):
      plt.clf()
      plt.plot(snap)
      plt.show(block = False)
      rmsSnap = np.std(snap)
      loadingFactor = -20.0*math.log10(128/rmsSnap)
      print "Rms = %f, loading factor = %f" % (rmsSnap,loadingFactor)
    if i == rpt-1:
      np.savetxt(name, snap,fmt='%d')
    ogp, pwr_sinad = fit_cores.fit_snap(snap, fr, samp_freq, name,\
       clear_avgs = ((i == 0) and not donot_clear), prnt = (i == rpt-1))
    avg_pwr_sinad += pwr_sinad
  return ogp, avg_pwr_sinad/rpt
Ejemplo n.º 18
0
def dopsdcores(nfft=None, rpt=10):
    if nfft == None:
        nfft = numpoints / 4
    for i in range(rpt):
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        power, freqs = mlab.psd(snap, nfft*4, Fs=samp_freq*1e6, detrend=mlab.detrend_mean, \
            scale_by_freq=False)
        if i == 0:
            psd_all = power[:1 + nfft / 2]
        else:
            psd_all += power[:1 + nfft / 2]
        power, freqs = mlab.psd(snap[0:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
            scale_by_freq=True)
        if i == 0:
            psd1 = power
        else:
            psd1 += power
        power, freqs = mlab.psd(snap[1:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
            scale_by_freq=True)
        if i == 0:
            psd2 = power
        else:
            psd2 += power
        power, freqs = mlab.psd(snap[2:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
            scale_by_freq=True)
        if i == 0:
            psd3 = power
        else:
            psd3 += power
        power, freqs = mlab.psd(snap[3:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
            scale_by_freq=True)
        if i == 0:
            psd4 = power
        else:
            psd4 += power
    data = np.column_stack((freqs*1e-6, 10*np.log10(psd_all/rpt), \
        10*np.log10(psd1/rpt), \
        10*np.log10(psd2/rpt), 10*np.log10(psd3/rpt), 10*np.log10(psd4/rpt)))
    np.savetxt("psd_cores", data, fmt=('%7.2f'))
Ejemplo n.º 19
0
    def setUpClass(cls):
        TestBase.setUpClass()

        cls._sample_rate = cls._clk_rate * 2.
        cls._tone_per = int(round(cls._sample_rate / cls._tone_freq))
        #cls._raw = adc5g.get_snapshot(cls._roach, 'delay_fifo_snap', False, 0 )
        cls._raw2 = adc5g.get_snapshot(cls._roach, 'snap', False, 0)
        
        #cls._raw = list(samp for samp in cls._raw)
        cls._raw2 = list(samp for samp in cls._raw2)
        #print "THE AMPLITUDE: ", cls._raw
        print "THE AMPLITUDE2: ", cls._raw2
        #cls._bias = (cls._raw[0] + cls._raw[cls._tone_per/2])/2.
        #cls._amp = sqrt((cls._raw[0]-cls._bias)**2 + (cls._raw[cls._tone_per/4]-cls._bias)**2)
        
        #cls._phase = atan2((cls._raw[0]-cls._bias)/cls._amp, (cls._raw[125]-cls._bias)/cls._amp)
        #cls._fit = list(cls._amp*sin(t*2*pi/cls._tone_per + cls._phase) + cls._bias \
                        #for t in range(len(cls._raw)))
        cls._roach.write_int('delay_fifo_enable', 0)
        """cls._roach.write_int('en_tri', 1)
Ejemplo n.º 20
0
def og_from_noise(fname=None, rpt=100, printEach=False):
    """
  Take a number of snapshots of noise.  Analyze for offset and gain
  for each core separately.
  """
    global ogp_name

    if fname == None:
        fname = ogp_name + ".meas"
    sum_result = np.zeros((15), dtype=float)
    sum_cnt = 0
    for n in range(rpt):
        result = np.zeros((15), dtype=float)
        snap = adc5g.get_snapshot(roach2,
                                  snap_name,
                                  man_trig=True,
                                  wait_period=2)
        if (rpt == 1):
            np.savetxt("t.og_noise", snap, fmt='%d')
        l = float(len(snap))
        snap_off = np.sum(snap) / l
        snap_amp = np.sum(abs(snap - snap_off)) / l
        result[0] = snap_off * (-500.0 / 256.0)
        result[1] = snap_amp
        for core in range(4):
            # This will actually sample the cores in the order A,C,B,D
            # index will fix this up when data is put in the result array
            index = (3, 9, 6, 12)[core]
            c = snap[core::4]
            l = float(len(c))
            off = np.sum(c) / l
            result[index] = off * (-500.0 / 256.0)
            amp = np.sum(abs(c - off)) / l
            result[index + 1] = 100.0 * (snap_amp - amp) / snap_amp
        sum_result += result
        sum_cnt += 1
        if printEach:
            print "%.4f " * 15 % tuple(result)
    sum_result /= sum_cnt
    print "%.4f " * 15 % tuple(sum_result)
    np.savetxt(fname, sum_result[3:], fmt="%8.4f")
Ejemplo n.º 21
0
def dopsdcores(nfft = None, rpt = 10):
  if nfft == None:
    nfft = numpoints/4
  for i in range(rpt):
    snap=adc5g.get_snapshot(roach2, snap_name, man_trig=True, wait_period=2)
    power, freqs = mlab.psd(snap, nfft*4, Fs=samp_freq*1e6, detrend=mlab.detrend_mean, \
        scale_by_freq=False)
    if i == 0:
      psd_all = power[:1+nfft/2]
    else:
      psd_all += power[:1+nfft/2]
    power, freqs = mlab.psd(snap[0:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
        scale_by_freq=True)
    if i == 0:
      psd1 = power
    else:
      psd1 += power
    power, freqs = mlab.psd(snap[1:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
        scale_by_freq=True)
    if i == 0:
      psd2 = power
    else:
      psd2 += power
    power, freqs = mlab.psd(snap[2:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
        scale_by_freq=True)
    if i == 0:
      psd3 = power
    else:
      psd3 += power
    power, freqs = mlab.psd(snap[3:: 4], nfft, Fs=samp_freq*.25e6, detrend=mlab.detrend_mean,\
        scale_by_freq=True)
    if i == 0:
      psd4 = power
    else:
      psd4 += power
  data = np.column_stack((freqs*1e-6, 10*np.log10(psd_all/rpt), \
      10*np.log10(psd1/rpt), \
      10*np.log10(psd2/rpt), 10*np.log10(psd3/rpt), 10*np.log10(psd4/rpt)))
  np.savetxt("psd_cores", data, fmt=('%7.2f'))
Ejemplo n.º 22
0
    raise RuntimeError(msg)


Fs = 2*2048e6 # R2DBE sampling freq
Nif    = 2  # R2DBE typically 2 IFs
Ninteg = 1  # integrate this many ADC snapshots
if len(sys.argv)==2:
	Ninteg = int(sys.argv[1])

Nsamp = [0]*Nif
Lfft  = [0]*Nif
data  = [None]*Nif

for ii in range(Ninteg):
	for ifnr in range(Nif):
	        data8 = adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_%d_data' % (ifnr))
		Lfft[ifnr] = len(data8)
		Nsamp[ifnr] = Nsamp[ifnr] + Lfft[ifnr]
		if data[ifnr]==None:
			data[ifnr] = data8
		else:
			# data[ifnr] = data[ifnr] + data8
			data[ifnr] = [data[ifnr][n]+data8[n] for n in range(len(data8))]
	        print '   Int %d/%d : ADC %d snapshot of 8-bit data, got %d samples' % (ii+1,Ninteg,ifnr,len(data8))

for ifnr in range(Nif):
	subplot(Nif,1,(ifnr+1))
	plotSpectrum(data[ifnr], Fs, 'ADC %d' % (ifnr))
gcf().set_facecolor('white')
show()
def get_data():
    #get the data... 
    hola = numpy.array(adc5g.get_snapshot(fpga, "snapshot0"))
    hola1 = numpy.array(adc5g.get_snapshot(fpga, "snapshot1"))
    #    raw_1 = numpy.array(adc5g.get_snapshot(fpga, "raw_1"))
    return hola, hola1
Ejemplo n.º 24
0
parser.add_argument('-v','--verbose',action='count',
    help="control verbosity, use multiple times for more detailed output")
parser.add_argument('host',metavar='R2DBE',type=str,nargs='?',default='r2dbe-1',
    help="hostname or ip address of r2dbe (default is 'r2dbe-1')")
args = parser.parse_args()

# connect to roach2
roach2 = corr.katcp_wrapper.FpgaClient(args.host)
if not roach2.wait_connected(timeout=args.timeout):
    msg = "Could not establish connection to '{0}' within {1} seconds, aborting".format(
        args.host,args.timeout)
    raise RuntimeError(msg)

if args.verbose > 1:
    print "connected to '{0}'".format(args.host)

for ii in ['0','1']:
    # grab snapshot of 8 bit data from each input
    if args.verbose > 2:
        print "get snapshot form 'r2dbe_snap_8bit_{0}_data'".format(ii)
    x8 = adc5g.get_snapshot(roach2,'r2dbe_snap_8bit_'+ii+'_data')
    
    th = get_th_16_84(x8)

    if args.verbose > 0:
        print "threshold {0} = {1}".format(ii,th)
    # write threshold to FPGA
    if args.verbose > 2:
        print "write threshold to 'r2dbe_quantize_{0}_thresh'".format(ii)
    roach2.write_int('r2dbe_quantize_'+ii+'_thresh', th)
Ejemplo n.º 25
0
def cplanecmd(cmd):
    af, socktype, proto, canonname, sa = socket_res
    s = socket.socket(af,socktype, proto)
    s.connect(sa)
    s.sendall(cmd + ';') # extra ';' will not matter
    ret = s.recv(8192).strip()
    s.close()
    return ret

recstate = cplanecmd('record?;')
if "recording" in recstate:
    sys.exit('currently recording do not run!')
if hascorr:
    roach2 = corr.katcp_wrapper.FpgaClient(r2_hostname)
    roach2.wait_connected()
    x0 = np.array(adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_0_data'))
    x1 = np.array(adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_1_data'))
    th0 = roach2.read_int('r2dbe_quantize_0_thresh')
    th1 = roach2.read_int('r2dbe_quantize_1_thresh')

class R2EpochIsCorrect(unittest.TestCase):
    def test(self):
        utcnow = datetime.utcnow()
        epoch = 2*(utcnow.year - 2000) + (utcnow.month > 6)
        self.assertEqual(epoch, roach2.read_int('r2dbe_vdif_0_hdr_w1_ref_ep'), "epoch set in R2DBE startup script")
        self.assertEqual(epoch, roach2.read_int('r2dbe_vdif_1_hdr_w1_ref_ep'), "epoch set in R2DBE startup script")

# class R2SecondsAreCorrect(unittest.TestCase):
#     def test(self):
#         utcnow = datetime.utcnow()
#         wait = (1500000 - utcnow.microsecond) % 1e6 # get to 0.5s boundary
    # OFFSET - GAIN - PHASE Calibration

    print 'Doing OGP calibration...'
    #ogp, sinad = rww_tools.dosnap(fr=opts.testfreq,name=FNAME,rpt=opts.n_trials,donot_clear=False)

    # calibration parameters
    rpt = 30  # repetitions until set of offset, ganancia y fase
    snap_name = 'snapshot1'  # ADC snapshot name
    samp_freq = frec_samp  # ADC interleave mode sample rate
    FNAME = 'snapshot_adc1_raw.dat'
    avg_pwr_sinad = 0
    fr = opts.testfreq
    donot_clear = False

    for i in range(rpt):
        snap = adc.get_snapshot(fpga, snap_name, man_trig=True, wait_period=2)
        np.savetxt(FNAME, snap, fmt='%d')
        ogp, pwr_sinad = fit_cores.fit_snap(fr, samp_freq, FNAME,\
            clear_avgs = i == 0 and not donot_clear, prnt = i == rpt-1)
        avg_pwr_sinad += pwr_sinad

    sinad = avg_pwr_sinad / rpt

    ogp = ogp[3:]

    np.savetxt('ogp', ogp, fmt='%8.4f')

    # print registers
    print 'OGP registers:  '
    rww_tools.get_ogp()
Ejemplo n.º 27
0
                    help ='Interleave data from pairs of ADC cores (even the cores not used in the downstream firmware')

args = parser.parse_args()

print "Connecting to %s" % args.host
snap = casperfpga.CasperFpga(args.host)
print "Interpretting design data for %s with %s" % (args.host, args.fpgfile)
snap.get_system_information(args.fpgfile)

chani = []
chanq = []
speci = []
specq = []
for i in range(args.numsnaps):
    print "Grabbing ADC data (%d of %d)" % (i+1, args.numsnaps)
    all_chan_data = adc5g.get_snapshot(snap, 'ss_adc')
    
    # Separate data into multiple channels
    if args.interleave:
        chani = [all_chan_data[0::2]]
        chanq = [all_chan_data[1::2]]
    else:
        chani = [all_chan_data[0::2][0::2]]
        chanq = [all_chan_data[1::2][0::2]]
    speci += [np.abs(np.fft.rfft(chani[-1]))**2]
    specq += [np.abs(np.fft.rfft(chanq[-1]))**2]
    time.sleep(0.2)

chani = np.array(chani)
chanq = np.array(chanq)
speci = np.array(speci)
Ejemplo n.º 28
0
    type=str,
    nargs='?',
    default='r2dbe-1',
    help="hostname or ip address of r2dbe (default is 'r2dbe-1')")
args = parser.parse_args()

# connect to roach2
roach2 = corr.katcp_wrapper.FpgaClient(args.host)
if not roach2.wait_connected(timeout=args.timeout):
    msg = "Could not establish connection to '{0}' within {1} seconds, aborting".format(
        args.host, args.timeout)
    raise RuntimeError(msg)

if args.verbose > 1:
    print "connected to '{0}'".format(args.host)

for ii in ['0', '1']:
    # grab snapshot of 8 bit data from each input
    if args.verbose > 2:
        print "get snapshot form 'r2dbe_snap_8bit_{0}_data'".format(ii)
    x8 = adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_' + ii + '_data')

    th = get_th_16_84(x8)

    if args.verbose > 0:
        print "threshold {0} = {1}".format(ii, th)
    # write threshold to FPGA
    if args.verbose > 2:
        print "write threshold to 'r2dbe_quantize_{0}_thresh'".format(ii)
    roach2.write_int('r2dbe_quantize_' + ii + '_thresh', th)
Ejemplo n.º 29
0
# reverse time order (per vdif spec)
roach2.write_int('r2dbe_vdif_0_reorder_2b_samps', 1)
roach2.write_int('r2dbe_vdif_1_reorder_2b_samps', 1)

# set to test-vector noise mode
roach2.write_int('r2dbe_quantize_0_thresh', 12)
roach2.write_int('r2dbe_quantize_1_thresh', 12)
# JanW: -7 dBm over 0-1.5 GHz band input to R2DBE
#  thresh=16 produces 10%:41%:41%:8%
#  thresh=12 produces 16%:35%:35%:14%

# set threshold automatically
# get snapshot of 8-bit data
print 'Setting 8-bit -> 2-bit quantization threshold levels...'
x8_0 = adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_0_data')
L = len(x8_0)
print 'Auto-thresholding input 0 using %d samples' % (L)
y = sorted(x8_0)
Lt = int(L * 0.16)
th1 = abs(y[Lt - 1])
Lt2 = int(L * 0.84)
th2 = abs(y[Lt2 - 1])
th = (th1 + th2) / 2
roach2.write_int('r2dbe_quantize_0_thresh', th)
print 'r2dbe_quantize_0_thresh : %d' % (th)

x8_1 = adc5g.get_snapshot(roach2, 'r2dbe_snap_8bit_1_data')
L = len(x8_1)
print 'Auto-thresholding input 1 using %d samples' % (L)
y = sorted(x8_1)
    # OFFSET - GAIN - PHASE Calibration

    print "Doing OGP calibration..."
    # ogp, sinad = rww_tools.dosnap(fr=opts.testfreq,name=FNAME,rpt=opts.n_trials,donot_clear=False)

    # calibration parameters
    rpt = 30  # repetitions until set of offset, ganancia y fase
    snap_name = "snapshot1"  # ADC snapshot name
    samp_freq = frec_samp  # ADC interleave mode sample rate
    FNAME = "snapshot_adc1_raw.dat"
    avg_pwr_sinad = 0
    fr = opts.testfreq
    donot_clear = False

    for i in range(rpt):
        snap = adc.get_snapshot(fpga, snap_name, man_trig=True, wait_period=2)
        np.savetxt(FNAME, snap, fmt="%d")
        ogp, pwr_sinad = fit_cores.fit_snap(
            fr, samp_freq, FNAME, clear_avgs=i == 0 and not donot_clear, prnt=i == rpt - 1
        )
        avg_pwr_sinad += pwr_sinad

    sinad = avg_pwr_sinad / rpt

    ogp = ogp[3:]

    np.savetxt("ogp", ogp, fmt="%8.4f")

    # print registers
    print "OGP registers:  "
    rww_tools.get_ogp()
def get_data():
    #get the data...
    hola = numpy.array(adc5g.get_snapshot(fpga, "snapshot0"))
    hola1 = numpy.array(adc5g.get_snapshot(fpga, "snapshot1"))
    #    raw_1 = numpy.array(adc5g.get_snapshot(fpga, "raw_1"))
    return hola, hola1