Ejemplo n.º 1
0
    def __init__(self,
                 training_instances: List[Instance],
                 n: int,
                 lda=0.1,
                 max_iter=50,
                 verbose=False):
        """
        :param training_instances: the instances on which to train
        :param n: the number of un-poisoned instances in training_instances
                  - the size of the original data set
        :param lda: lambda - for regularization term
        :param max_iter - the maximum number of iterations
        :param verbose: if True, the solver will be in verbose mode
        """

        Learner.__init__(self)
        self.set_training_instances(training_instances)
        self.n = n
        self.lda = lda  # lambda
        self.max_iter = max_iter
        self.verbose = verbose

        self.fvs = None
        self.labels = None
        self.tau = None
        self.w = None
        self.b = None

        # If true, setup problem on train - only use for learners that use
        # the same instance of TRIM
        self.redo_problem_on_train = True
        self.temp_tuple = None
        self.irl_selection = np.full(len(self.training_instances), 1)
Ejemplo n.º 2
0
    def __init__(self, training_instances, verbose=False):
        Learner.__init__(self)
        self.training_instances = training_instances
        self.verbose = verbose

        self.w = None
        self.mean = None
        self.std = None
Ejemplo n.º 3
0
 def __init__(self, params=None, training_instances=None):
     Learner.__init__(self)
     self.weight_vector = None
     self.bias = 0
     self.c_delta = 0.5
     self.c = 1
     if params is not None:
         self.set_params(params)
     if training_instances is not None:
         self.set_training_instances(training_instances)
Ejemplo n.º 4
0
 def __init__(self,
              base_model=None,
              training_instances=None,
              attack_alg=None):
     Learner.__init__(self)
     self.model = Model(base_model)
     self.attack_alg = attack_alg  # Type: class
     self.adv_params = None
     self.attacker = None  # Type: Adversary
     self.set_training_instances(training_instances)
     self.iterations = 5  # int: control the number of rounds directly
Ejemplo n.º 5
0
    def __init__(self, training_instances=None, coef=0.25, params=None):

        Learner.__init__(self)
        self.weight_vector = None  # type: np.array(shape=(1))
        self.num_features = 0  # type: int
        self.coef = coef  # type: float
        self.bias = 0  # type: int

        if training_instances is not None:
            self.set_training_instances(training_instances)
        if params is not None:
            self.set_params(params)
Ejemplo n.º 6
0
    def __init__(self, training_instances=None, params=None):

        Learner.__init__(self)
        self.weight_vector = None  # type: np.array(shape=1)
        self.num_features = 0  # type: int
        self.hinge_loss_multiplier = 0.5  # type: float
        self.max_feature_deletion = 30  # type: int
        self.bias = 0  # type: int
        if params is not None:
            self.set_params(params)
        if training_instances is not None:
            self.set_training_instances(training_instances)