def test_Adversarial(option, repo, filename):
    if option=='Adversarial_Szegedy':
        adv_object = Adversarial_Szegedy(repo=repo, filename=filename, nb_class=100, data_name='cifar100')
        #adv_object.generate()
        adv_object.save('./adv/Szegedy', 'cifar100_v0')
    if option=='Adversarial_Goodfellow':
        adv_object = Adversarial_Goodfellow(repo=repo, filename=filename, nb_class=100, data_name='cifar100')
        adv_object.generate() 
        adv_object.save('./adv/Goodfellow', 'cifar100_v0')
Ejemplo n.º 2
0
def test_Adversarial(option):
    if option == 'Adversarial_Szegedy':
        adv_object = Adversarial_Szegedy()
        #adv_object.generate()
        adv_object.save('./adv/Szegedy', 'cifar10_v0')
    if option == 'Adversarial_Goodfellow':
        adv_object = Adversarial_Goodfellow()
        #adv_object.generate()
        adv_object.save('./adv/Goodfellow', 'cifar10_v0')

    if option == 'Adversarial_DeepFool':
        adv_object = Adversarial_DeepFool()
        adv_object.generate()
Ejemplo n.º 3
0
def build_confusion_matrix(option_adv):

    repo = "./weights/ensemble/CNN/MNIST"
    nb_class = 10
    filenames = os.listdir(repo)
    model, dataset = build_model_MNIST()
    (X_train, Y_train), (X_test, Y_test) = dataset
    model.load_weights(os.path.join(repo, filenames[0]))

    if option_adv == 'goodfellow':
        adv_object = Adversarial_Goodfellow(epsilon=1.,
                                            model=model,
                                            dataset=dataset,
                                            n_channels=1,
                                            img_nrows=28,
                                            img_ncols=28,
                                            use_train=True)

        z, x, y = adv_object.load('./adv/MNIST/train', 'goodfellow')

    if option_adv == 'szegedy':
        adv_object = Adversarial_Szegedy(model=model,
                                         dataset=dataset,
                                         n_channels=1,
                                         img_nrows=28,
                                         img_ncols=28,
                                         use_train=True)

        z, x, y = adv_object.load('./adv/MNIST/train', 'szegedy')
    confusion_matrix = np.zeros((nb_class, nb_class))
    prediction = np.argmax(model.predict(z), axis=1)
    for i in range(len(y)):
        confusion_matrix[prediction[i], y[i]] += 1.

    dico_class = dict([(i, []) for i in range(nb_class)])
    for i in range(nb_class):
        confusion_matrix[i] /= sum(confusion_matrix[i])
        label_sort = np.argsort(confusion_matrix[i])[::-1]
        confidence_sort = np.sort(confusion_matrix[i])[::-1]
        cumsum_confidence = np.cumsum(confidence_sort)
        tmp = cumsum_confidence - 0.8 * np.ones((nb_class, ))
        index = np.argmin((tmp)**2)
        if tmp[index] < 0:
            index += 1
        dico_class[i] = np.sort(label_sort[:index + 1])

    return dico_class
Ejemplo n.º 4
0
def test_classification(adv_option, fisher_ensemble=False):

    ensemble = []
    repo = "./weights/ensemble/CNN/MNIST/ensemble"
    filenames = os.listdir(repo)
    model, dataset = build_model_MNIST()
    (X_train, Y_train), (X_test, Y_test) = dataset
    model.load_weights(os.path.join(repo, filenames[0]))

    fisher = None
    if fisher_ensemble:
        fisher = Fisher(model)
        fisher.load('./weights/ensemble/CNN', 'fisher_mnist')

    filenames = filenames[1:]
    for filename in filenames:
        if fisher_ensemble:
            net = fisher.fisher_sample()
        else:
            net, _ = build_model_MNIST()
            net.load_weights(os.path.join(repo, filename))

        ensemble.append(net)

    if not (adv_option in ['szegedy', 'goodfellow', 'deepfool']):
        raise NotImplementedError()

    if adv_option == 'szegedy':
        adv_object = Adversarial_Szegedy(model=model,
                                         dataset=dataset,
                                         n_channels=1,
                                         img_nrows=28,
                                         img_ncols=28,
                                         use_train=True)

        true_x, adv_x, adv_y = adv_object.load('./adv/MNIST/train', 'szegedy')
    if adv_option == 'goodfellow':
        adv_object = Adversarial_Goodfellow(epsilon=1.,
                                            model=model,
                                            dataset=dataset,
                                            n_channels=1,
                                            img_nrows=28,
                                            img_ncols=28,
                                            use_train=False)

        true_x, adv_x, adv_y = adv_object.load('./adv/MNIST/test',
                                               'goodfellow')
    if adv_option == 'deepfool':
        adv_object = Adversarial_DeepFool(model=model,
                                          dataset=dataset,
                                          n_channels=1,
                                          img_nrows=28,
                                          img_ncols=28,
                                          use_train=False)

        true_x, adv_x, adv_y = adv_object.load('./adv/MNIST/test', 'deepfool')

    prediction = model.predict(adv_x)

    prediction_ensemble = [net.predict(adv_x) for net in ensemble[1:]]
    predict_ensemble = np.mean(prediction_ensemble, axis=0)

    prediction_true_ensemble = [net.predict(true_x) for net in ensemble[1:]]
    predict_true = np.mean(prediction_true_ensemble, axis=0)

    i = 3
    print(np.linalg.norm(predict_ensemble[i] - predict_true[i]))
    return

    distance = prediction - predict_ensemble
    dico = {}
    dico['ADVERSARIAL'] = []
    print('ADVERSARIAL')
    for i in range(len(distance)):
        tmp = np.linalg.norm(distance[i])
        print(tmp, np.min(distance[i]), np.max(distance[i]),
              np.max(prediction[i]), np.max(predict_ensemble[i]), 0)
        dico['ADVERSARIAL'].append(tmp)

    _, (x_test, y_test) = dataset
    n = len(y_test)
    x_true = x_test[np.random.permutation(n)][:len(adv_x)]

    prediction = model.predict(x_true)
    prediction_ensemble = [net.predict(x_true) for net in ensemble[1:]]
    predict_ensemble = np.mean(prediction_ensemble, axis=0)

    distance = prediction - predict_ensemble
    dico['GROUNDTRUTH'] = []
    print('GROUNDTRUTH')
    for i in range(len(distance)):
        tmp = np.linalg.norm(distance[i])
        print(tmp, np.min(distance[i]), np.max(distance[i]),
              np.max(prediction[i]), np.max(predict_ensemble[i]), 1)
        dico['GROUNDTRUTH'].append(tmp)

    import pickle as pkl
    from contextlib import closing
    if fisher_ensemble:
        filename = os.path.join('./adv/MNIST/test',
                                adv_option + '_density_adv')
    else:

        filename = os.path.join('./adv/MNIST/test', adv_option + '_density')
    with closing(open(filename, 'wb')) as f:
        pkl.dump(dico, f, protocol=pkl.HIGHEST_PROTOCOL)
Ejemplo n.º 5
0
def test_committee(repo, option_adv):
    dico_C_U = build_confusion_matrix(option_adv)
    dico_name = generate_filenames(dico_C_U, option_adv)
    with closing(open('./MNIST_dico_ICLR_' + option_adv, 'rb')) as f:
        dico_name = pkl.load(f)
        #pkl.dump(dico_name, f, protocol=pkl.HIGHEST_PROTOCOL)
    #return
    nb_class = 10
    filename = 'ensemble_MNIST0'
    ensemble = []
    label_table = []
    model, dataset = model, dataset = build_model_MNIST()
    model.load_weights(os.path.join(repo, filename))
    ensemble.append(model)
    label_table.append(range(nb_class))
    for key in dico_name.keys():
        f_0, c, f_1, u = dico_name[key]
        net_c, _ = build_model_MNIST(num_classes=len(c))
        net_u, _ = build_model_MNIST(num_classes=len(u))
        net_c.load_weights(os.path.join(repo, f_0))
        net_u.load_weights(os.path.join(repo, f_1))
        label_table.append(c)
        label_table.append(u)
        ensemble.append(net_c)
        ensemble.append(net_u)

    # step 1 load adv examples
    adv_object = Adversarial_Szegedy(model=model,
                                     dataset=dataset,
                                     n_channels=1,
                                     img_nrows=28,
                                     img_ncols=28,
                                     use_train=True)

    #adv_object.save('./adv/MNIST/test', 'goodfellow')
    print('ADVERSARIAL')
    adv_x, _ = adv_object.load('./adv/MNIST/test', 'szegedy')
    dico = dict([('ADVERSARIAL', []), ('GROUNDTRUTH', [])])

    # step 1
    predict_ensemble = np.array([
        predict(net, adv_x, table)
        for net, table in zip(ensemble, label_table)
    ])
    confidency_ensemble = np.array(
        [np.max(net.predict(adv_x), axis=1) for net in ensemble])

    for i in range(len(adv_x)):
        occurences = [
            len(np.where(predict_ensemble[:, i] == j)) for j in range(nb_class)
        ]
        winning = max(occurences) == nb_class + 1
        if winning:
            print('WINNING')
            # pick only the classifier with the right label
            label = np.argmax(occurences)

            networks_index = np.where(predict_ensemble[:, i] == label)
        else:
            networks_index = range(nb_class + 1)

        result = np.max(confidency_ensemble[networks_index, i])
        dico['ADVERSARIAL'].append(result)
        print(result, 0)

    print('GROUNDTRUTH')
    _, (x_test, y_test) = dataset
    n = len(y_test)
    x_true = x_test[np.random.permutation(n)][:len(adv_x)]

    # step 1
    predict_ensemble = np.array([
        predict(net, x_true, table)
        for net, table in zip(ensemble, label_table)
    ])
    confidency_ensemble = np.array(
        [np.max(net.predict(x_true), axis=1) for net in ensemble])

    for i in range(len(x_true)):
        occurences = [
            len(np.where(predict_ensemble[:, i] == j)) for j in range(nb_class)
        ]
        winning = max(occurences) == nb_class + 1
        if winning:
            print('WINNING')
            # pick only the classifier with the right label
            label = np.argmax(occurences)
            networks_index = np.where(predict_ensemble[:, i] == label)
        else:
            networks_index = range(nb_class + 1)

        result = np.max(confidency_ensemble[networks_index, i])
        dico['GROUNDTRUTH'].append(result)
        print(result, 1)

    #import pdb; pdb.set_trace()
    filename = os.path.join('./adv/MNIST/test',
                            option_adv + '_density_committee')
    with closing(open(filename, 'wb')) as f:
        pkl.dump(dico, f, protocol=pkl.HIGHEST_PROTOCOL)
Ejemplo n.º 6
0
def test_ensemble_robustness_adv():

    repo = "./weights/ensemble/CNN/MNIST"
    filenames = os.listdir(repo)
    model, dataset = build_model_MNIST()
    (X_train, Y_train), (X_test, Y_test) = dataset

    model.load_weights(os.path.join(repo, filenames[0]))

    adv_object = Adversarial_Goodfellow(epsilon=0.03,
                                        model=model,
                                        dataset=dataset,
                                        n_channels=1,
                                        img_nrows=28,
                                        img_ncols=28,
                                        use_train=True)

    #adv_object.save('./adv/MNIST/train', 'goodfellow')
    #z, x, y = adv_object.load('./adv/MNIST/train', 'goodfellow')
    z, x, y = adv_object.generate()

    im_00 = z[0].reshape((28, 28))
    im_01 = x[0].reshape((28, 28))

    adv_object = Adversarial_Szegedy(0.5,
                                     model=model,
                                     dataset=dataset,
                                     n_channels=1,
                                     img_nrows=28,
                                     img_ncols=28,
                                     use_train=True)

    #adv_object.save('./adv/MNIST/train', 'szegedy')

    #z, x,y = adv_object.load('./adv/MNIST/train', 'szegedy')
    z, x, y = adv_object.generate()
    im_10 = z[0].reshape((28, 28))
    im_11 = x[0].reshape((28, 28))
    """
    adv_object =  Adversarial_DeepFool(model=model, dataset=dataset,
                                        n_channels=1, img_nrows=28, img_ncols=28, use_train=True)
    adv_object.generate()
    #adv_object.save('./adv/MNIST/test', 'deepfool')
    
    #z, x, y = adv_object.load('./adv/MNIST/test', 'deepfool')
    print('deepfool')
    #print(len(x))
    #import pdb; pdb.set_trace()
    """

    import matplotlib.pyplot as plt

    plt.subplot(2, 2, 1)
    plt.imshow(im_00)
    plt.subplot(2, 2, 2)
    plt.imshow(im_01)
    plt.subplot(2, 2, 3)
    plt.imshow(im_10)
    plt.subplot(2, 2, 4)
    plt.imshow(im_11)

    conf_0 = np.max(model.predict(im_10.reshape((1, 28, 28, 1))))
    conf_1 = np.max(model.predict(im_11.reshape((1, 28, 28, 1))))

    print(conf_0, conf_1)