Ejemplo n.º 1
0
def main():

    train, spikes = get_spike_train()
    # print("Stimulus:", spikes)
    ws0 = np.random.normal(loc=w0, scale=sigma0, size=(N))
    ws1 = np.random.normal(loc=w1, scale=sigma1, size=(N))
    current0 = get_cumulative_current(spikes, ws0)
    current1 = get_cumulative_current(spikes, ws1)

    model = Model.RS
    initU, initV = initalize_U_V(model, M, True)
    _, V0, _x0 = get_U_V(initU, initV, model, current0)
    _, V1, _x1 = get_U_V(initU, initV, model, current1)
    print("Spikes: %d, w_mean: %f, w_std: %f" % (len(_x0), w0, sigma0))
    print("Spikes: %d, w_mean: %f, w_std: %f" % (len(_x1), w1, sigma1))

    plot_curr_and_resp( current0, V0, "Q2.a.png" )
    plot_curr_and_resp( current1, V1, "Q2.b.png" )
Ejemplo n.º 2
0
def main():

    _, spikes1 = get_spike_train()
    _, spikes2 = get_spike_train()
    # print("S1:", spikes1)
    # print("S2:", spikes2)

    ws0 = np.random.normal(loc=w0, scale=sigma0, size=(N))
    model = Model.RS
    initU, initV = initalize_U_V(model, M, True)

    print("Q5.a")
    currenti1 = get_cumulative_current(spikes1, ws0)
    _, V1, aspikes1 = get_U_V(initU, initV, model, currenti1)
    currenti2 = get_cumulative_current(spikes2, ws0)
    _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)
    plot_curr_and_resp(currenti1, V1, "Q5.a.1.png")
    plot_curr_and_resp(currenti2, V2, "Q5.a.2.png")

    print("Q5.b")
    print("Removing spikes for S2")
    wsn = ws0
    while len(aspikes2) != 0:
        wsn, _, _ = train_d_synapses(wsn, spikes=spikes2, effect=aspikes2)
        currenti2 = get_cumulative_current(spikes2, wsn)
        _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)
        plot_curr_and_resp(currenti2, V2, "Q5.b.2.png")

    print("Q5.c")
    print("Causing spikes for S1 and removing spikes for S2")
    # main learning loop
    wsn = ws0
    currenti1 = get_cumulative_current(spikes1, wsn)
    _, V1, aspikes1 = get_U_V(initU, initV, model, currenti1)
    currenti2 = get_cumulative_current(spikes2, wsn)
    _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)

    while len(aspikes1) == 0 or len(aspikes2) != 0:

        currenti1 = get_cumulative_current(spikes1, wsn)
        _, _, aspikes1 = get_U_V(initU, initV, model, currenti1)
        while len(aspikes1) == 0:
            wsn, _, _ = train_synapses(wsn, spikes=spikes1, effect=aspikes1)
            currenti1 = get_cumulative_current(spikes1, wsn)
            _, _, aspikes1 = get_U_V(initU, initV, model, currenti1)
        print("Causing spikes for S1")

        currenti2 = get_cumulative_current(spikes2, wsn)
        _, _, aspikes2 = get_U_V(initU, initV, model, currenti2)
        while len(aspikes2) != 0:
            wsn, _, _ = train_d_synapses(wsn, spikes=spikes2, effect=aspikes2)
            currenti2 = get_cumulative_current(spikes2, wsn)
            _, _, aspikes2 = get_U_V(initU, initV, model, currenti2)
        print("Removed spikes for S2")

        currenti1 = get_cumulative_current(spikes1, wsn)
        _, V1, aspikes1 = get_U_V(initU, initV, model, currenti1)
        currenti2 = get_cumulative_current(spikes2, wsn)
        _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)

    plot_curr_and_resp(currenti1, V1, "Q5.c.1.png")
    plot_curr_and_resp(currenti2, V2, "Q5.c.2.png")

    print("Q5.d")
    print("Removing spikes for S1 and causing spikes for S2")
    # main learning loop
    wsn = ws0
    currenti1 = get_cumulative_current(spikes1, wsn)
    _, V1, aspikes1 = get_U_V(initU, initV, model, currenti1)
    currenti2 = get_cumulative_current(spikes2, wsn)
    _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)

    while len(aspikes1) != 0 or len(aspikes2) == 0:

        currenti1 = get_cumulative_current(spikes1, wsn)
        _, _, aspikes1 = get_U_V(initU, initV, model, currenti1)
        while len(aspikes1) != 0:
            wsn, _, _ = train_d_synapses(wsn, spikes=spikes1, effect=aspikes1)
            currenti1 = get_cumulative_current(spikes1, wsn)
            _, _, aspikes1 = get_U_V(initU, initV, model, currenti1)
        print("Removed spikes for S1")

        currenti2 = get_cumulative_current(spikes2, wsn)
        _, _, aspikes2 = get_U_V(initU, initV, model, currenti2)
        while len(aspikes2) == 0:
            wsn, _, _ = train_synapses(wsn, spikes=spikes2, effect=aspikes2)
            currenti2 = get_cumulative_current(spikes2, wsn)
            _, _, aspikes2 = get_U_V(initU, initV, model, currenti2)
        print("Caused spikes for S2")

        currenti1 = get_cumulative_current(spikes1, wsn)
        _, V1, aspikes1 = get_U_V(initU, initV, model, currenti1)
        currenti2 = get_cumulative_current(spikes2, wsn)
        _, V2, aspikes2 = get_U_V(initU, initV, model, currenti2)

    plot_curr_and_resp(currenti1, V1, "Q5.d.1.png")
    plot_curr_and_resp(currenti2, V2, "Q5.d.2.png")