Ejemplo n.º 1
0
    def from_config(cls, config: Config):
        classname = cls.__name__
        acqf = config.getobj("common", "acqf", fallback=None)
        extra_acqf_args = cls._get_acqf_options(acqf, config)

        options = {}
        options["num_restarts"] = config.getint(classname, "restarts", fallback=10)
        options["raw_samples"] = config.getint(classname, "samps", fallback=1000)
        options["verbosity_freq"] = config.getint(
            classname, "verbosity_freq", fallback=-1
        )
        options["lr"] = config.getfloat(classname, "lr", fallback=0.01)  # type: ignore
        options["momentum"] = config.getfloat(classname, "momentum", fallback=0.9)  # type: ignore
        options["nesterov"] = config.getboolean(classname, "nesterov", fallback=True)
        options["epochs"] = config.getint(classname, "epochs", fallback=50)
        options["milestones"] = config.getlist(
            classname, "milestones", fallback=[25, 40]  # type: ignore
        )
        options["gamma"] = config.getfloat(classname, "gamma", fallback=0.1)  # type: ignore
        options["loss_constraint_fun"] = config.getobj(
            classname, "loss_constraint_fun", fallback=default_loss_constraint_fun
        )

        explore_features = config.getlist(classname, "explore_idxs", fallback=None)  # type: ignore

        return cls(
            acqf=acqf,
            acqf_kwargs=extra_acqf_args,
            model_gen_options=options,
            explore_features=explore_features,
        )
Ejemplo n.º 2
0
    def from_config(cls, config: Config):
        classname = cls.__name__
        n_samples = config.getint(classname, "num_samples", fallback=1)
        n_rejection_samples = config.getint(classname,
                                            "num_rejection_samples",
                                            fallback=500)
        num_ts_points = config.getint(classname,
                                      "num_ts_points",
                                      fallback=1000)
        target = config.getfloat(classname, "target", fallback=0.75)
        objective = config.getobj(classname,
                                  "objective",
                                  fallback=ProbitObjective)
        explore_features = config.getlist(classname,
                                          "explore_idxs",
                                          fallback=None)  # type: ignore

        return cls(
            n_samples=n_samples,
            n_rejection_samples=n_rejection_samples,
            num_ts_points=num_ts_points,
            target_value=target,
            objective=objective,
            explore_features=explore_features,
        )
 def from_config(cls, config: Config):
     classname = cls.__name__
     subgen_cls = config.getobj(classname,
                                "subgenerator",
                                fallback=OptimizeAcqfGenerator)
     subgen = subgen_cls.from_config(config)
     epsilon = config.getfloat(classname, "epsilon", fallback=0.1)
     return cls(subgenerator=subgen, epsilon=epsilon)
Ejemplo n.º 4
0
    def from_config(cls, config: Config) -> GPClassificationModel:
        """Alternate constructor for GPClassification model.

        This is used when we recursively build a full sampling strategy
        from a configuration. TODO: document how this works in some tutorial.

        Args:
            config (Config): A configuration containing keys/values matching this class

        Returns:
            GPClassificationModel: Configured class instance.
        """

        classname = cls.__name__
        inducing_size = config.getint(classname, "inducing_size", fallback=10)

        lb = config.gettensor(classname, "lb")
        ub = config.gettensor(classname, "ub")
        dim = config.getint(classname, "dim", fallback=None)

        mean_covar_factory = config.getobj(classname,
                                           "mean_covar_factory",
                                           fallback=default_mean_covar_factory)

        mean, covar = mean_covar_factory(config)
        max_fit_time = config.getfloat(classname,
                                       "max_fit_time",
                                       fallback=None)

        inducing_point_method = config.get(classname,
                                           "inducing_point_method",
                                           fallback="auto")

        likelihood_cls = config.getobj(classname, "likelihood", fallback=None)

        if likelihood_cls is not None:
            if hasattr(likelihood_cls, "from_config"):
                likelihood = likelihood_cls.from_config(config)
            else:
                likelihood = likelihood_cls()
        else:
            likelihood = None  # fall back to __init__ default

        return cls(
            lb=lb,
            ub=ub,
            dim=dim,
            inducing_size=inducing_size,
            mean_module=mean,
            covar_module=covar,
            max_fit_time=max_fit_time,
            inducing_point_method=inducing_point_method,
            likelihood=likelihood,
        )
Ejemplo n.º 5
0
def monotonic_mean_covar_factory(
    config: Config,
) -> Tuple[ConstantMeanPartialObsGrad, gpytorch.kernels.ScaleKernel]:
    """Default factory for monotonic GP models based on derivative observations.

    Args:
        config (Config): Config containing (at least) bounds, and optionally LSE target.

    Returns:
        Tuple[ConstantMeanPartialObsGrad, gpytorch.kernels.ScaleKernel]: Instantiated mean and
            scaled RBF kernels with partial derivative observations.
    """
    lb = config.gettensor("monotonic_mean_covar_factory", "lb")
    ub = config.gettensor("monotonic_mean_covar_factory", "ub")
    assert lb.shape[0] == ub.shape[0], "bounds shape mismatch!"
    dim = lb.shape[0]
    fixed_mean = config.getboolean("monotonic_mean_covar_factory",
                                   "fixed_mean",
                                   fallback=False)

    mean = ConstantMeanPartialObsGrad()

    if fixed_mean:
        try:
            target = config.getfloat("monotonic_mean_covar_factory", "target")
            mean.constant.requires_grad_(False)
            mean.constant.copy_(torch.tensor([norm.ppf(target)]))
        except NoOptionError:
            raise RuntimeError(
                "Config got fixed_mean=True but no target included!")

    ls_prior = gpytorch.priors.GammaPrior(
        concentration=__default_invgamma_concentration,
        rate=__default_invgamma_rate,
        transform=lambda x: 1 / x,
    )
    ls_prior_mode = ls_prior.rate / (ls_prior.concentration + 1)
    ls_constraint = gpytorch.constraints.Positive(transform=None,
                                                  initial_value=ls_prior_mode)

    covar = gpytorch.kernels.ScaleKernel(
        RBFKernelPartialObsGrad(
            lengthscale_prior=ls_prior,
            lengthscale_constraint=ls_constraint,
            ard_num_dims=dim,
        ),
        outputscale_prior=gpytorch.priors.SmoothedBoxPrior(a=1, b=4),
    )

    return mean, covar
    def from_config(cls, config: Config):
        classname = cls.__name__
        acqf = config.getobj(classname, "acqf", fallback=None)
        extra_acqf_args = cls._get_acqf_options(acqf, config)

        restarts = config.getint(classname, "restarts", fallback=10)
        samps = config.getint(classname, "samps", fallback=1000)

        max_gen_time = config.getfloat(classname,
                                       "max_gen_time",
                                       fallback=None)

        return cls(
            acqf=acqf,
            acqf_kwargs=extra_acqf_args,
            restarts=restarts,
            samps=samps,
            max_gen_time=max_gen_time,
        )
Ejemplo n.º 7
0
def default_mean_covar_factory(
    config: Config,
) -> Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.ScaleKernel]:
    """Default factory for generic GP models

    Args:
        config (Config): Object containing bounds (and potentially other
            config details).

    Returns:
        Tuple[gpytorch.means.Mean, gpytorch.kernels.Kernel]: Instantiated
            ConstantMean and ScaleKernel with priors based on bounds.
    """

    lb = config.gettensor("default_mean_covar_factory", "lb")
    ub = config.gettensor("default_mean_covar_factory", "ub")
    fixed_mean = config.getboolean("default_mean_covar_factory",
                                   "fixed_mean",
                                   fallback=False)
    lengthscale_prior = config.get("default_mean_covar_factory",
                                   "lengthscale_prior",
                                   fallback="gamma")
    outputscale_prior = config.get("default_mean_covar_factory",
                                   "outputscale_prior",
                                   fallback="box")
    kernel = config.getobj("default_mean_covar_factory",
                           "kernel",
                           fallback=gpytorch.kernels.RBFKernel)

    assert lb.shape[0] == ub.shape[0], "bounds shape mismatch!"
    dim = lb.shape[0]
    mean = gpytorch.means.ConstantMean()

    if fixed_mean:
        try:
            target = config.getfloat("default_mean_covar_factory", "target")
            mean.constant.requires_grad_(False)
            mean.constant.copy_(torch.tensor([norm.ppf(target)]))
        except NoOptionError:
            raise RuntimeError(
                "Config got fixed_mean=True but no target included!")

    if lengthscale_prior == "invgamma":

        ls_prior = gpytorch.priors.GammaPrior(
            concentration=__default_invgamma_concentration,
            rate=__default_invgamma_rate,
            transform=lambda x: 1 / x,
        )

        ls_prior_mode = ls_prior.rate / (ls_prior.concentration + 1)
    elif lengthscale_prior == "gamma":
        ls_prior = gpytorch.priors.GammaPrior(concentration=3.0, rate=6.0)
        ls_prior_mode = (ls_prior.concentration - 1) / ls_prior.rate
    else:
        raise RuntimeError(
            f"Lengthscale_prior should be invgamma or gamma, got {lengthscale_prior}"
        )

    if outputscale_prior == "gamma":
        os_prior = gpytorch.priors.GammaPrior(concentration=2.0, rate=0.15)
    elif outputscale_prior == "box":
        os_prior = gpytorch.priors.SmoothedBoxPrior(a=1, b=4)
    else:
        raise RuntimeError(
            f"Outputscale_prior should be gamma or box, got {outputscale_prior}"
        )

    ls_constraint = gpytorch.constraints.Positive(transform=None,
                                                  initial_value=ls_prior_mode)

    covar = gpytorch.kernels.ScaleKernel(
        kernel(
            lengthscale_prior=ls_prior,
            lengthscale_constraint=ls_constraint,
            ard_num_dims=dim,
        ),
        outputscale_prior=os_prior,
    )

    return mean, covar
Ejemplo n.º 8
0
def song_mean_covar_factory(
    config: Config,
) -> Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.AdditiveKernel]:
    """
    Factory that makes kernels like Song et al. 2018:
    Linear in intensity dimension (assumed to be the last
    dimension), RBF in context dimensions, summed.

    Args:
        config (Config): Config object containing (at least) bounds and optionally
            LSE target.

    Returns:
        Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.AdditiveKernel]: Instantiated
            constant mean object and additive kernel object.
    """
    lb = config.gettensor("song_mean_covar_factory", "lb")
    ub = config.gettensor("song_mean_covar_factory", "ub")
    assert lb.shape[0] == ub.shape[0], "bounds shape mismatch!"
    dim = lb.shape[0]

    mean = gpytorch.means.ConstantMean()

    try:
        target = config.getfloat("song_mean_covar_factory", "target")
    except NoOptionError:
        target = 0.75
    mean.constant.requires_grad_(False)
    mean.constant.copy_(torch.tensor([norm.ppf(target)]))

    ls_prior = gpytorch.priors.GammaPrior(
        concentration=__default_invgamma_concentration,
        rate=__default_invgamma_rate,
        transform=lambda x: 1 / x,
    )
    ls_prior_mode = ls_prior.rate / (ls_prior.concentration + 1)

    ls_constraint = gpytorch.constraints.Positive(transform=None,
                                                  initial_value=ls_prior_mode)

    stim_dim = config.getint("song_mean_covar_factory",
                             "stim_dim",
                             fallback=-1)
    context_dims = list(range(dim))
    stim_dim = context_dims.pop(stim_dim)  # support relative stim dims

    if dim == 1:
        # this can just be LinearKernel but for consistency of interface
        # we make it additive with one module
        return (
            mean,
            gpytorch.kernels.AdditiveKernel(
                gpytorch.kernels.ScaleKernel(
                    gpytorch.kernels.LinearKernel(ard_num_dims=1),
                    outputscale_prior=gpytorch.priors.SmoothedBoxPrior(a=1,
                                                                       b=4),
                )),
        )
    else:
        context_covar = gpytorch.kernels.ScaleKernel(
            gpytorch.kernels.RBFKernel(
                lengthscale_prior=ls_prior,
                lengthscale_constraint=ls_constraint,
                ard_num_dims=dim - 1,
                active_dims=context_dims,
            ),
            outputscale_prior=gpytorch.priors.SmoothedBoxPrior(a=1, b=4),
        )
        intensity_covar = gpytorch.kernels.ScaleKernel(
            gpytorch.kernels.LinearKernel(active_dims=stim_dim,
                                          ard_num_dims=1),
            outputscale_prior=gpytorch.priors.SmoothedBoxPrior(a=1, b=4),
        )

    return mean, context_covar + intensity_covar