Ejemplo n.º 1
0
    def test_sparseblockouter(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        out = self.outer_op(o, x, y, xIdx, yIdx)

        f = aesara.function(
            [o, x, y, xIdx, yIdx], out, on_unused_input="warn", mode=self.mode
        )

        (
            o_val,
            x_val,
            y_val,
            xIdx_val,
            yIdx_val,
        ) = self.outer_data()

        th_out = f(o_val, x_val, y_val, xIdx_val, yIdx_val)
        ref_out = self.outer_numpy(o_val, x_val, y_val, xIdx_val, yIdx_val)

        utt.assert_allclose(ref_out, th_out)
Ejemplo n.º 2
0
    def test_sparseblockgemvF(self):
        # Test the fortan order for W (which can happen in the grad for some
        # graphs).

        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(
            b.take(oIdx, axis=0),
            tensor.DimShuffle((False, False, False, False), (0, 1, 3, 2))(
                tensor.as_tensor_variable(W)
            ),
            h,
            iIdx,
            oIdx,
        )

        f = aesara.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        th_out = f(np.swapaxes(W_val, 2, 3), h_val, iIdx_val, b_val, oIdx_val)
        ref_out = self.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val
        )

        utt.assert_allclose(ref_out, th_out)
Ejemplo n.º 3
0
    def test_outer_infershape(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        self._compile_and_check(
            [o, x, y, xIdx, yIdx],
            [self.outer_op(o, x, y, xIdx, yIdx)],
            self.outer_data(),
            self.outer_class,
        )
Ejemplo n.º 4
0
    def test_gemv_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check(
            [W, h, iIdx, b, oIdx],
            [self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)],
            self.gemv_data(),
            self.gemv_class,
        )
Ejemplo n.º 5
0
    def test_dot_infershape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        self._compile_and_check(
            [W, h, iIdx, b, oIdx],
            [sparse_block_dot(W, h, iIdx, b, oIdx)],
            self.gemv_data(),
            self.gemv_class,
        )
Ejemplo n.º 6
0
 def test_rebuild_strict(self):
     # Test fix for error reported at
     # https://groups.google.com/d/topic/aesara-users/BRK0UEB72XA/discussion
     w = tensor.imatrix()
     x, y = tensor.ivectors("x", "y")
     z = x * y
     f = aesara.function([w, y], z, givens=[(x, w)], rebuild_strict=False)
     z_val = f(np.ones((3, 5), dtype="int32"), np.arange(5, dtype="int32"))
     assert z_val.ndim == 2
     assert np.all(z_val == np.ones((3, 5)) * np.arange(5))
Ejemplo n.º 7
0
    def test_on_real_input(self):
        x = dvector()
        rng = np.random.RandomState(23)
        xval = rng.randn(10)
        np.all(0 == aesara.function([x], imag(x))(xval))
        np.all(xval == aesara.function([x], real(x))(xval))

        x = imatrix()
        xval = np.asarray(rng.randn(3, 3) * 100, dtype="int32")
        np.all(0 == aesara.function([x], imag(x))(xval))
        np.all(xval == aesara.function([x], real(x))(xval))
Ejemplo n.º 8
0
    def test_sparseblockgemv_grad_shape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
        go = aesara.grad(o.sum(), [b, W, h])

        f = aesara.function([W, h, iIdx, b, oIdx], go, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        # just make sure that it runs correcly and all the shapes are ok.
        b_g, W_g, h_g = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        assert b_g.shape == b_val.shape
        assert h_g.shape == h_val.shape
        assert W_g.shape == W_val.shape
Ejemplo n.º 9
0
    def test_sparseblockgemv(self):
        # Compares the numpy and aesara versions of sparseblockgemv.

        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)

        f = aesara.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = self.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
        ref_out = self.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val
        )

        utt.assert_allclose(ref_out, th_out)
Ejemplo n.º 10
0
def test_SwitchingProcess():

    np.random.seed(2023532)

    test_states = np.r_[2, 0, 1, 2, 0, 1]
    test_dists = [
        Constant.dist(0),
        pm.Poisson.dist(100.0),
        pm.Poisson.dist(1000.0)
    ]
    test_dist = SwitchingProcess.dist(test_dists, test_states)
    assert np.array_equal(test_dist.shape, test_states.shape)

    test_sample = test_dist.random()
    assert test_sample.shape == (test_states.shape[0], )
    assert np.all(test_sample[test_states == 0] == 0)
    assert np.all(0 < test_sample[test_states == 1])
    assert np.all(test_sample[test_states == 1] < 1000)
    assert np.all(100 < test_sample[test_states == 2])

    test_mus = np.r_[100, 100, 500, 100, 100, 100]
    test_dists = [
        Constant.dist(0),
        pm.Poisson.dist(test_mus),
        pm.Poisson.dist(10000.0),
    ]
    test_dist = SwitchingProcess.dist(test_dists, test_states)
    assert np.array_equal(test_dist.shape, test_states.shape)

    test_sample = test_dist.random()
    assert test_sample.shape == (test_states.shape[0], )
    assert np.all(200 < test_sample[2] < 600)
    assert np.all(0 < test_sample[5] < 200)
    assert np.all(5000 < test_sample[test_states == 2])

    test_dists = [
        Constant.dist(0),
        pm.Poisson.dist(100.0),
        pm.Poisson.dist(1000.0)
    ]
    test_dist = SwitchingProcess.dist(test_dists, test_states)
    for i in range(len(test_dists)):
        test_logp = test_dist.logp(
            np.tile(test_dists[i].mode.eval(), test_states.shape)).eval()
        assert test_logp[test_states != i].max() < test_logp[test_states ==
                                                             i].min()

    # Try a continuous mixture
    test_states = np.r_[2, 0, 1, 2, 0, 1]
    test_dists = [
        pm.Normal.dist(0.0, 1.0),
        pm.Normal.dist(100.0, 1.0),
        pm.Normal.dist(1000.0, 1.0),
    ]
    test_dist = SwitchingProcess.dist(test_dists, test_states)
    assert np.array_equal(test_dist.shape, test_states.shape)

    test_sample = test_dist.random()
    assert test_sample.shape == (test_states.shape[0], )
    assert np.all(test_sample[test_states == 0] < 10)
    assert np.all(50 < test_sample[test_states == 1])
    assert np.all(test_sample[test_states == 1] < 150)
    assert np.all(900 < test_sample[test_states == 2])

    # Make sure we can use a large number of distributions in the mixture
    test_states = np.ones(50)
    test_dists = [Constant.dist(i) for i in range(50)]
    test_dist = SwitchingProcess.dist(test_dists, test_states)
    assert np.array_equal(test_dist.shape, test_states.shape)

    with pytest.raises(TypeError):
        SwitchingProcess.dist([1], test_states)

    with aesara.change_flags(compute_test_value="off"):
        # Test for the case when a default can't be computed
        test_dist = pm.Poisson.dist(at.scalar())

        # Confirm that there's no default
        with pytest.raises(AttributeError):
            test_dist.default()

        # Let it try to sample using `Distribution.random` and fail
        with pytest.raises(ValueError):
            SwitchingProcess.dist([test_dist], test_states)

    # Evaluate multiple observed state sequences in an extreme case
    test_states = at.imatrix("states")
    test_states.tag.test_value = np.zeros((10, 4)).astype("int32")
    test_dist = SwitchingProcess.dist(
        [Constant.dist(0), Constant.dist(1)], test_states)
    test_obs = np.tile(np.arange(4), (10, 1)).astype("int32")
    test_logp = test_dist.logp(test_obs)
    exp_logp = np.tile(
        np.array([0.0] + [-np.inf] * 3, dtype=aesara.config.floatX), (10, 1))
    assert np.array_equal(test_logp.tag.test_value, exp_logp)