Ejemplo n.º 1
0
    def get_celerite_matrices(self, x, diag, **kwargs):
        x = tt.as_tensor_variable(x)
        diag = tt.as_tensor_variable(diag)
        ar, cr, ac, bc, cc, dc = self.coefficients
        a = diag + tt.sum(ar) + tt.sum(ac)

        arg = dc[None, :] * x[:, None]
        cos = tt.cos(arg)
        sin = tt.sin(arg)
        z = tt.zeros_like(x)

        U = tt.concatenate(
            (
                ar[None, :] + z[:, None],
                ac[None, :] * cos + bc[None, :] * sin,
                ac[None, :] * sin - bc[None, :] * cos,
            ),
            axis=1,
        )

        V = tt.concatenate(
            (tt.ones_like(ar)[None, :] + z[:, None], cos, sin),
            axis=1,
        )

        c = tt.concatenate((cr, cc, cc))

        return c, a, U, V
Ejemplo n.º 2
0
    def get_celerite_matrices(self, x, diag, **kwargs):
        dt = self.delta
        ar, cr, a, b, c, d = self.term.coefficients

        # Real part
        cd = cr * dt
        delta_diag = 2 * tt.sum(ar * (cd - tt.sinh(cd)) / cd ** 2)

        # Complex part
        cd = c * dt
        dd = d * dt
        c2 = c ** 2
        d2 = d ** 2
        c2pd2 = c2 + d2
        C1 = a * (c2 - d2) + 2 * b * c * d
        C2 = b * (c2 - d2) - 2 * a * c * d
        norm = (dt * c2pd2) ** 2
        sinh = tt.sinh(cd)
        cosh = tt.cosh(cd)
        delta_diag += 2 * tt.sum(
            (
                C2 * cosh * tt.sin(dd)
                - C1 * sinh * tt.cos(dd)
                + (a * c + b * d) * dt * c2pd2
            )
            / norm
        )

        new_diag = diag + delta_diag
        return super().get_celerite_matrices(x, new_diag)
Ejemplo n.º 3
0
 def get_value(self, tau):
     ar, cr, ac, bc, cc, dc = self.coefficients
     tau = tt.abs_(tau)
     tau = tt.shape_padright(tau)
     K = tt.sum(ar * tt.exp(-cr * tau), axis=-1)
     factor = tt.exp(-cc * tau)
     K += tt.sum(ac * factor * tt.cos(dc * tau), axis=-1)
     K += tt.sum(bc * factor * tt.sin(dc * tau), axis=-1)
     return K
Ejemplo n.º 4
0
 def get_psd(self, omega):
     ar, cr, ac, bc, cc, dc = self.coefficients
     omega = tt.shape_padright(omega)
     w2 = omega ** 2
     w02 = cc ** 2 + dc ** 2
     power = tt.sum(ar * cr / (cr ** 2 + w2), axis=-1)
     power += tt.sum(
         ((ac * cc + bc * dc) * w02 + (ac * cc - bc * dc) * w2)
         / (w2 * w2 + 2.0 * (cc ** 2 - dc ** 2) * w2 + w02 * w02),
         axis=-1,
     )
     return np.sqrt(2.0 / np.pi) * power
Ejemplo n.º 5
0
    def _do_compute(self, quiet):
        if quiet:
            self._d, self._W, _ = ops.factor_quiet(self._t, self._c, self._a,
                                                   self._U, self._V)
            self._log_det = tt.switch(tt.any(self._d <= 0.0), -np.inf,
                                      tt.sum(tt.log(self._d)))

        else:
            self._d, self._W, _ = ops.factor(self._t, self._c, self._a,
                                             self._U, self._V)
            self._log_det = tt.sum(tt.log(self._d))

        self._norm = -0.5 * (self._log_det + self._size * np.log(2 * np.pi))
Ejemplo n.º 6
0
    def grad(self, inputs, gradients):
        b, r = inputs
        s, dsdb, dsdr = self(b, r)
        bs = gradients[0]

        for g in gradients[1:]:
            if not isinstance(g.type, aesara.gradient.DisconnectedType):
                raise ValueError(
                    "Backpropagation is only supported for the solution vector"
                )

        if isinstance(bs.type, aesara.gradient.DisconnectedType):
            return [
                aesara.gradient.DisconnectedType()(),
                aesara.gradient.DisconnectedType()(),
            ]

        return [tt.sum(bs * dsdb, axis=-1), tt.sum(bs * dsdr, axis=-1)]
Ejemplo n.º 7
0
    def _get_position_and_velocity(self, t, parallax=None):
        sinf, cosf = self._get_true_anomaly(t)

        if self.ecc is None:
            r = 1.0
            vx, vy, vz = self._rotate_vector(-self.K0 * sinf, self.K0 * cosf)
        else:
            r = (1.0 - self.ecc**2) / (1 + self.ecc * cosf)
            vx, vy, vz = self._rotate_vector(-self.K0 * sinf,
                                             self.K0 * (cosf + self.ecc))

        x, y, z = self._rotate_vector(r * cosf, r * sinf)

        pos = tt.stack((x, y, z), axis=-1)
        pos = tt.concatenate(
            (
                tt.sum(tt.shape_padright(self.a_star) * pos,
                       axis=0,
                       keepdims=True),
                tt.shape_padright(self.a_planet) * pos,
            ),
            axis=0,
        )
        vel = tt.stack((vx, vy, vz), axis=-1)
        vel = tt.concatenate(
            (
                tt.sum(
                    tt.shape_padright(self.m_planet) * vel,
                    axis=0,
                    keepdims=True,
                ),
                -tt.shape_padright(self.m_star) * vel,
            ),
            axis=0,
        )

        if parallax is not None:
            # convert r into arcseconds
            pos = pos * (parallax * au_per_R_sun)
            vel = vel * (parallax * au_per_R_sun)

        return pos, vel
Ejemplo n.º 8
0
def test_velocity():
    t_tensor = tt.dvector()
    t = np.linspace(0, 100, 1000)
    m_planet = 0.1
    m_star = 1.3
    orbit = KeplerianOrbit(
        m_star=m_star,
        r_star=1.0,
        t0=0.5,
        period=100.0,
        ecc=0.1,
        omega=0.5,
        Omega=1.0,
        incl=0.25 * np.pi,
        m_planet=m_planet,
    )

    star_pos = orbit.get_star_position(t_tensor)
    star_vel = theano.function([], orbit.get_star_velocity(t))()
    star_vel_expect = np.empty_like(star_vel)
    for i in range(3):
        g = theano.grad(tt.sum(star_pos[i]), t_tensor)
        star_vel_expect[i] = theano.function([t_tensor], g)(t)
    assert np.allclose(star_vel, star_vel_expect)

    planet_pos = orbit.get_planet_position(t_tensor)
    planet_vel = theano.function([], orbit.get_planet_velocity(t))()
    planet_vel_expect = np.empty_like(planet_vel)
    for i in range(3):
        g = theano.grad(tt.sum(planet_pos[i]), t_tensor)
        planet_vel_expect[i] = theano.function([t_tensor], g)(t)
    assert np.allclose(planet_vel, planet_vel_expect)

    pos = orbit.get_relative_position(t_tensor)
    vel = np.array(theano.function([], orbit.get_relative_velocity(t))())
    vel_expect = np.empty_like(vel)
    for i in range(3):
        g = theano.grad(tt.sum(pos[i]), t_tensor)
        vel_expect[i] = theano.function([t_tensor], g)(t)
    assert np.allclose(vel, vel_expect)
Ejemplo n.º 9
0
    def get_value(self, tau0):
        dt = self.delta
        ar, cr, a, b, c, d = self.term.coefficients

        # Format the lags correctly
        tau0 = tt.abs_(tau0)
        tau = tau0[..., None]

        # Precompute some factors
        dpt = dt + tau
        dmt = dt - tau

        # Real parts:
        # tau > Delta
        crd = cr * dt
        cosh = tt.cosh(crd)
        norm = 2 * ar / crd ** 2
        K_large = tt.sum(norm * (cosh - 1) * tt.exp(-cr * tau), axis=-1)

        # tau < Delta
        crdmt = cr * dmt
        K_small = K_large + tt.sum(norm * (crdmt - tt.sinh(crdmt)), axis=-1)

        # Complex part
        cd = c * dt
        dd = d * dt
        c2 = c ** 2
        d2 = d ** 2
        c2pd2 = c2 + d2
        C1 = a * (c2 - d2) + 2 * b * c * d
        C2 = b * (c2 - d2) - 2 * a * c * d
        norm = 1.0 / (dt * c2pd2) ** 2
        k0 = tt.exp(-c * tau)
        cdt = tt.cos(d * tau)
        sdt = tt.sin(d * tau)

        # For tau > Delta
        cos_term = 2 * (tt.cosh(cd) * tt.cos(dd) - 1)
        sin_term = 2 * (tt.sinh(cd) * tt.sin(dd))
        factor = k0 * norm
        K_large += tt.sum(
            (C1 * cos_term - C2 * sin_term) * factor * cdt, axis=-1
        )
        K_large += tt.sum(
            (C2 * cos_term + C1 * sin_term) * factor * sdt, axis=-1
        )

        # tau < Delta
        edmt = tt.exp(-c * dmt)
        edpt = tt.exp(-c * dpt)
        cos_term = (
            edmt * tt.cos(d * dmt) + edpt * tt.cos(d * dpt) - 2 * k0 * cdt
        )
        sin_term = (
            edmt * tt.sin(d * dmt) + edpt * tt.sin(d * dpt) - 2 * k0 * sdt
        )
        K_small += tt.sum(2 * (a * c + b * d) * c2pd2 * dmt * norm, axis=-1)
        K_small += tt.sum((C1 * cos_term + C2 * sin_term) * norm, axis=-1)

        return tt.switch(tt.le(tau0, dt), K_small, K_large)
Ejemplo n.º 10
0
def test_approx_transit_depth():
    u = np.array([0.3, 0.2])
    lc = LimbDarkLightCurve(u[0], u[1])

    for b, delta in [
        (np.float64(0.5), np.float64(0.01)),
        (np.array([0.1, 0.9]), np.array([0.1, 0.5])),
        (np.array([0.1, 0.9, 0.3]), np.array([0.1, 0.5, 0.0234])),
    ]:
        dv = tt.as_tensor_variable(delta)
        ror, jac = lc.get_ror_from_approx_transit_depth(dv, b, jac=True)
        _check_quad(u, b, delta, ror.eval())
        assert np.allclose(theano.grad(tt.sum(ror), dv).eval(), jac.eval())
Ejemplo n.º 11
0
    def get_light_curve(
        self,
        orbit=None,
        r=None,
        t=None,
        texp=None,
        oversample=7,
        order=0,
        use_in_transit=None,
        light_delay=False,
    ):
        """Get the light curve for an orbit at a set of times

        Args:
            orbit: An object with a ``get_relative_position`` method that
                takes a tensor of times and returns a list of Cartesian
                coordinates of a set of bodies relative to the central source.
                This method should return three tensors (one for each
                coordinate dimension) and each tensor should have the shape
                ``append(t.shape, r.shape)`` or ``append(t.shape, oversample,
                r.shape)`` when ``texp`` is given. The first two coordinate
                dimensions are treated as being in the plane of the sky and the
                third coordinate is the line of sight with positive values
                pointing *away* from the observer. For an example, take a look
                at :class:`orbits.KeplerianOrbit`.
            r (tensor): The radius of the transiting body in the same units as
                ``r_star``. This should have a shape that is consistent with
                the coordinates returned by ``orbit``. In general, this means
                that it should probably be a scalar or a vector with one entry
                for each body in ``orbit``. Note that this is a different
                quantity than the planet-to-star radius ratio; do not confuse
                the two!
            t (tensor): The times where the light curve should be evaluated.
            texp (Optional[tensor]): The exposure time of each observation.
                This can be a scalar or a tensor with the same shape as ``t``.
                If ``texp`` is provided, ``t`` is assumed to indicate the
                timestamp at the *middle* of an exposure of length ``texp``.
            oversample (Optional[int]): The number of function evaluations to
                use when numerically integrating the exposure time.
            order (Optional[int]): The order of the numerical integration
                scheme. This must be one of the following: ``0`` for a
                centered Riemann sum (equivalent to the "resampling" procedure
                suggested by Kipping 2010), ``1`` for the trapezoid rule, or
                ``2`` for Simpson's rule.
            use_in_transit (Optional[bool]): If ``True``, the model will only
                be evaluated for the data points expected to be in transit
                as computed using the ``in_transit`` method on ``orbit``.

        """
        if orbit is None:
            raise ValueError("missing required argument 'orbit'")
        if r is None:
            raise ValueError("missing required argument 'r'")
        if t is None:
            raise ValueError("missing required argument 't'")

        use_in_transit = (not light_delay
                          if use_in_transit is None else use_in_transit)

        r = as_tensor_variable(r)
        r = tt.reshape(r, (r.size, ))
        t = as_tensor_variable(t)

        # If use_in_transit, we should only evaluate the model at times where
        # at least one planet is transiting
        if use_in_transit:
            transit_model = tt.shape_padleft(tt.zeros_like(r),
                                             t.ndim) + tt.shape_padright(
                                                 tt.zeros_like(t), r.ndim)
            inds = orbit.in_transit(t, r=r, texp=texp, light_delay=light_delay)
            t = t[inds]

        # Handle exposure time integration
        if texp is None:
            tgrid = t
            rgrid = tt.shape_padleft(r, tgrid.ndim) + tt.shape_padright(
                tt.zeros_like(tgrid), r.ndim)
        else:
            texp = as_tensor_variable(texp)

            oversample = int(oversample)
            oversample += 1 - oversample % 2
            stencil = np.ones(oversample)

            # Construct the exposure time integration stencil
            if order == 0:
                dt = np.linspace(-0.5, 0.5, 2 * oversample + 1)[1:-1:2]
            elif order == 1:
                dt = np.linspace(-0.5, 0.5, oversample)
                stencil[1:-1] = 2
            elif order == 2:
                dt = np.linspace(-0.5, 0.5, oversample)
                stencil[1:-1:2] = 4
                stencil[2:-1:2] = 2
            else:
                raise ValueError("order must be <= 2")
            stencil /= np.sum(stencil)

            if texp.ndim == 0:
                dt = texp * dt
            else:
                if use_in_transit:
                    dt = tt.shape_padright(texp[inds]) * dt
                else:
                    dt = tt.shape_padright(texp) * dt
            tgrid = tt.shape_padright(t) + dt

            # Madness to get the shapes to work out...
            rgrid = tt.shape_padleft(r, tgrid.ndim) + tt.shape_padright(
                tt.zeros_like(tgrid), 1)

        # Evalute the coordinates of the transiting body in the plane of the
        # sky
        coords = orbit.get_relative_position(tgrid, light_delay=light_delay)
        b = tt.sqrt(coords[0]**2 + coords[1]**2)
        b = tt.reshape(b, rgrid.shape)
        los = tt.reshape(coords[2], rgrid.shape)

        lc = self._compute_light_curve(b / orbit.r_star, rgrid / orbit.r_star,
                                       los / orbit.r_star)

        if texp is not None:
            stencil = tt.shape_padright(tt.shape_padleft(stencil, t.ndim), 1)
            lc = tt.sum(stencil * lc, axis=t.ndim)

        if use_in_transit:
            transit_model = tt.set_subtensor(transit_model[inds], lc)
            return transit_model
        else:
            return lc
Ejemplo n.º 12
0
    def __init__(self, *args, **kwargs):
        ttvs = kwargs.pop("ttvs", None)
        transit_times = kwargs.pop("transit_times", None)
        transit_inds = kwargs.pop("transit_inds", None)
        if ttvs is None and transit_times is None:
            raise ValueError("one of 'ttvs' or 'transit_times' must be "
                             "defined")
        if ttvs is not None:
            self.ttvs = [as_tensor_variable(ttv, ndim=1) for ttv in ttvs]
            if transit_inds is None:
                self.transit_inds = [
                    tt.arange(ttv.shape[0]) for ttv in self.ttvs
                ]
            else:
                self.transit_inds = [
                    tt.cast(as_tensor_variable(inds, ndim=1), "int64")
                    for inds in transit_inds
                ]

        else:
            # If transit times are given, compute the least squares period and
            # t0 based on these times.
            self.transit_times = []
            self.ttvs = []
            self.transit_inds = []
            period = []
            t0 = []
            for i, times in enumerate(transit_times):
                times = as_tensor_variable(times, ndim=1)
                if transit_inds is None:
                    inds = tt.arange(times.shape[0])
                else:
                    inds = tt.cast(as_tensor_variable(transit_inds[i]),
                                   "int64")
                self.transit_inds.append(inds)

                # A convoluted version of linear regression; don't ask
                N = times.shape[0]
                sumx = tt.sum(inds)
                sumx2 = tt.sum(inds**2)
                sumy = tt.sum(times)
                sumxy = tt.sum(inds * times)
                denom = N * sumx2 - sumx**2
                slope = (N * sumxy - sumx * sumy) / denom
                intercept = (sumx2 * sumy - sumx * sumxy) / denom
                expect = intercept + inds * slope

                period.append(slope)
                t0.append(intercept)
                self.ttvs.append(times - expect)
                self.transit_times.append(times)

            kwargs["t0"] = tt.stack(t0)

            # We'll have two different periods: one that is the mean difference
            # between transit times and one that is a parameter that sets the
            # transit shape. If a "period" parameter is not given, these will
            # be the same. Users will probably want to put a prior relating the
            # two periods if they use separate values.
            self.ttv_period = tt.stack(period)
            if "period" not in kwargs:
                if "delta_log_period" in kwargs:
                    kwargs["period"] = tt.exp(
                        tt.log(self.ttv_period) +
                        kwargs.pop("delta_log_period"))
                else:
                    kwargs["period"] = self.ttv_period

        super(TTVOrbit, self).__init__(*args, **kwargs)

        if ttvs is not None:
            self.ttv_period = self.period
            self.transit_times = [
                self.t0[i] + self.period[i] * self.transit_inds[i] + ttv
                for i, ttv in enumerate(self.ttvs)
            ]

        # Compute the full set of transit times
        self.all_transit_times = []
        for i, inds in enumerate(self.transit_inds):
            expect = self.t0[i] + self.period[i] * tt.arange(inds.max() + 1)
            self.all_transit_times.append(
                tt.set_subtensor(expect[inds], self.transit_times[i]))

        # Set up a histogram for identifying the transit offsets
        self._bin_edges = [
            tt.concatenate((
                [tts[0] - 0.5 * self.ttv_period[i]],
                0.5 * (tts[1:] + tts[:-1]),
                [tts[-1] + 0.5 * self.ttv_period[i]],
            )) for i, tts in enumerate(self.all_transit_times)
        ]
        self._bin_values = [
            tt.concatenate(([tts[0]], tts, [tts[-1]]))
            for i, tts in enumerate(self.all_transit_times)
        ]
Ejemplo n.º 13
0
 def forward(self, x):
     usum = tt.sum(x, axis=0)
     q = tt.stack([usum**2, 0.5 * x[0] / usum])
     return tt.log(q) - tt.log(1 - q)
Ejemplo n.º 14
0
 def _do_norm(self, y):
     alpha = ops.solve_lower(self._t, self._c, self._U, self._W,
                             y[:, None])[0][:, 0]
     return tt.sum(alpha**2 / self._d)
Ejemplo n.º 15
0
def duration_to_eccentricity(func, duration, ror,
                             **kwargs):  # pragma: no cover
    num_planets = kwargs.pop("num_planets", 1)
    orbit_type = kwargs.pop("orbit_type", KeplerianOrbit)
    name = kwargs.get("name", "dur_ecc")

    inputs = _get_consistent_inputs(
        kwargs.get("a", None),
        kwargs.get("period", None),
        kwargs.get("rho_star", None),
        kwargs.get("r_star", None),
        kwargs.get("m_star", None),
        kwargs.get("rho_star_units", None),
        kwargs.get("m_planet", 0.0),
        kwargs.get("m_planet_units", None),
    )
    a, period, rho_star, r_star, m_star, m_planet = inputs
    b = kwargs.get("b", 0.0)
    s = tt.sin(kwargs["omega"])
    umax_inv = tt.switch(tt.lt(s, 0), tt.sqrt(1 - s**2), 1.0)

    const = (period * tt.shape_padright(r_star) * tt.sqrt((1 + ror)**2 - b**2))
    const /= np.pi * a

    u = duration / const

    e1 = -s * u**2 / ((s * u)**2 + 1)
    e2 = tt.sqrt((s**2 - 1) * u**2 + 1) / ((s * u)**2 + 1)

    models = []
    logjacs = []
    logprobs = []
    for args in product(*(zip("np", (-1, 1)) for _ in range(num_planets))):
        labels, signs = zip(*args)

        # Compute the eccentricity branch
        ecc = tt.stack([e1[i] + signs[i] * e2[i] for i in range(num_planets)])

        # Work out the Jacobian
        valid_ecc = tt.and_(tt.lt(ecc, 1.0), tt.ge(ecc, 0.0))
        logjac = tt.switch(
            tt.all(valid_ecc),
            tt.sum(0.5 * tt.log(1 - ecc**2) + 2 * tt.log(s * ecc + 1) -
                   tt.log(tt.abs_(s + ecc)) - tt.log(const)),
            -np.inf,
        )
        ecc = tt.switch(valid_ecc, ecc, tt.zeros_like(ecc))

        # Create a sub-model to capture this component
        with pm.Model(name="dur_ecc_" + "_".join(labels)) as model:
            pm.Deterministic("ecc", ecc)
            orbit = orbit_type(ecc=ecc, **kwargs)
            logprob = tt.sum(func(orbit))

        models.append(model)
        logjacs.append(logjac)
        logprobs.append(logprob)

    # Compute the marginalized likelihood
    logjacs = tt.stack(logjacs)
    logprobs = tt.stack(logprobs)
    logprob = tt.switch(
        tt.gt(1.0 / u, umax_inv),
        tt.sum(pm.logsumexp(logprobs + logjacs)),
        -np.inf,
    )
    pm.Potential(name + "_logp", logprob)
    pm.Deterministic(name + "_logjacs", logjacs)
    pm.Deterministic(name + "_logprobs", logprobs)

    # Loop over models and compute the marginalized values for all the
    # parameters and deterministics
    norm = tt.sum(pm.logsumexp(logjacs))
    logw = tt.switch(
        tt.gt(1.0 / u, umax_inv),
        logjacs - norm,
        -np.inf + tt.zeros_like(logjacs),
    )
    pm.Deterministic(name + "_logw", logw)
    for k in models[0].named_vars.keys():
        name = k[len(models[0].name) + 1:]
        pm.Deterministic(
            name,
            sum(
                tt.exp(logw[i]) * model.named_vars[model.name + "_" + name]
                for i, model in enumerate(models)),
        )