def start_model(self, parsed_args):
        from aetros import keras_model_utils
        from aetros.backend import JobBackend
        from aetros.logger import GeneralLogger
        from aetros.Trainer import Trainer
        from aetros.keras_model_utils import ensure_dir

        if not parsed_args.id:
            print("No job id given.")
            sys.exit(1)

        print("...")
        self.lock.acquire()
        job_backend = JobBackend(parsed_args.id)
        job_backend.load_light_job()
        self.job_model = job_backend.get_job_model()

        if parsed_args.weights:
            weights_path = parsed_args.weights
        elif parsed_args.latest:
            weights_path = self.job_model.get_weights_filepath_latest()
        else:
            weights_path = self.job_model.get_weights_filepath_best()

        print("Check weights ...")

        if not os.path.exists(weights_path) or os.path.getsize(
                weights_path) == 0:
            weight_url = job_backend.get_best_weight_url(parsed_args.id)
            if not weight_url:
                print("No weights available for this job.")
                exit(1)

            print(
                ("Download weights %s to %s .." % (weight_url, weights_path)))
            ensure_dir(os.path.dirname(weights_path))

            f = open(weights_path, 'wb')
            f.write(urllib.urlopen(weight_url).read())
            f.close()

        keras_model_utils.job_prepare(job_backend)

        trainer = Trainer(job_backend)

        self.job_model.set_input_shape(trainer)

        print("Loading model ...")
        model = self.job_model.get_built_model(trainer)

        print(("Load weights %s ..." % (weights_path, )))
        self.job_model.load_weights(model, weights_path)
        print("Locked and loaded.")

        self.lock.release()

        return model
Ejemplo n.º 2
0
    def start_model(self, parsed_args):
        from aetros import keras_model_utils
        from aetros.backend import JobBackend
        from aetros.logger import GeneralLogger
        from aetros.Trainer import Trainer
        from aetros.keras_model_utils import ensure_dir

        if not parsed_args.id:
            print("No job id given.")
            sys.exit(1)

        print("...")
        self.lock.acquire()
        job_backend = JobBackend(parsed_args.id)
        job_backend.load_light_job()
        self.job_model = job_backend.get_job_model()

        if parsed_args.weights:
            weights_path = parsed_args.weights
        elif parsed_args.latest:
            weights_path = self.job_model.get_weights_filepath_latest()
        else:
            weights_path = self.job_model.get_weights_filepath_best()

        print("Check weights ...")

        if not os.path.exists(weights_path) or os.path.getsize(weights_path) == 0:
            weight_url = job_backend.get_best_weight_url(parsed_args.id)
            if not weight_url:
                print("No weights available for this job.")
                exit(1)

            print(("Download weights %s to %s .." % (weight_url, weights_path)))
            ensure_dir(os.path.dirname(weights_path))

            f = open(weights_path, 'wb')
            f.write(urllib.urlopen(weight_url).read())
            f.close()

        trainer = Trainer(job_backend)

        self.job_model.set_input_shape(trainer)

        print("Loading model ...")
        model = self.job_model.get_built_model(trainer)

        print(("Load weights %s ..." % (weights_path,)))
        self.job_model.load_weights(model, weights_path)
        print("Locked and loaded.")

        self.lock.release()

        return model
Ejemplo n.º 3
0
class KerasIntegration():
    def __init__(self,
                 id,
                 model,
                 api_key,
                 insights=False,
                 confusion_matrix=False,
                 insight_sample=None):
        """

        :type id: basestring The actual model name available in AETROS Trainer. Example peter/mnist-cnn
        :type insights: bool
        :type confusion_matrix: bool
        :type insight_sample: basestring|None A path to a sample which is being used for the insights. Default is first sample of data_validation.
        """
        self.confusion_matrix = confusion_matrix
        self.model = model

        if isinstance(model, Sequential) and not model.built:
            raise Exception('Sequential model is not built.')

        self.insight_sample = insight_sample
        self.id = id
        self.insights = insights
        self.model_type = 'custom'

        self.job_backend = JobBackend(api_token=api_key)

        copy = {
            'fit': self.model.fit,
            'fit_generator': self.model.fit_generator
        }

        def overwritten_fit(x,
                            y,
                            batch_size=32,
                            nb_epoch=10,
                            verbose=1,
                            callbacks=[],
                            validation_split=0.,
                            validation_data=None,
                            shuffle=True,
                            class_weight=None,
                            sample_weight=None,
                            **kwargs):

            callback = self.setup(x, nb_epoch, batch_size)
            callbacks.append(callback)
            copy['fit'](x, y, batch_size, nb_epoch, verbose, callbacks,
                        validation_split, validation_data, True, class_weight,
                        sample_weight, **kwargs)

            self.end()

        def overwritten_fit_generator(generator,
                                      samples_per_epoch,
                                      nb_epoch,
                                      verbose=1,
                                      callbacks=[],
                                      validation_data=None,
                                      nb_val_samples=None,
                                      class_weight={},
                                      max_q_size=10,
                                      nb_worker=1,
                                      pickle_safe=False):

            callback = self.setup(generator, nb_epoch)
            self.trainer.nb_val_samples = nb_val_samples
            self.trainer.data_validation = validation_data
            callbacks.append(callback)

            copy['fit_generator'](generator, samples_per_epoch, nb_epoch,
                                  verbose, callbacks, validation_data,
                                  nb_val_samples, class_weight, max_q_size,
                                  nb_worker, pickle_safe)
            self.end()

        self.model.fit = overwritten_fit
        self.model.fit_generator = overwritten_fit_generator

    def setup(self, x=None, nb_epoch=1, batch_size=16):
        graph = self.model_to_graph(self.model)

        from keras.preprocessing.image import Iterator

        if isinstance(x, Iterator):
            batch_size = x.batch_size

        settings = {
            'epochs':
            nb_epoch,
            'batchSize':
            batch_size,
            'optimizer':
            type(self.model.optimizer).__name__ if hasattr(
                self.model, 'optimizer') else ''
        }

        self.job_backend.ensure_model(self.id,
                                      self.model.to_json(),
                                      settings=settings,
                                      type=self.model_type,
                                      graph=graph)

        job_id = self.job_backend.create(self.id, insights=self.insights)
        self.job_backend.start()

        print(
            "AETROS job '%s' created and started. Open http://%s/trainer/app#/job=%s to monitor the training."
            % (job_id, self.job_backend.host, job_id))

        job = self.job_backend.load_light_job()
        general_logger = GeneralLogger(job, job_backend=self.job_backend)
        self.trainer = Trainer(self.job_backend, general_logger)

        self.monitoringThread = MonitoringThread(self.job_backend,
                                                 self.trainer)
        self.monitoringThread.daemon = True
        self.monitoringThread.start()

        self.trainer.model = self.model
        self.trainer.data_train = {'x': x}

        self.callback = KerasLogger(self.trainer, self.job_backend,
                                    general_logger)
        self.callback.log_epoch = False
        self.callback.model = self.model
        self.callback.confusion_matrix = self.confusion_matrix

        return self.callback

    def publish(self):
        graph = self.model_to_graph(self.model)
        self.job_backend.ensure_model(self.id,
                                      self.model.to_json(),
                                      type=self.model_type,
                                      graph=graph)

    def start(self, nb_epoch=1, nb_sample=1, title="TRAINING"):
        """
        Starts $title
        :return:
        """

        self.setup(nb_epoch)
        self.callback.params['nb_epoch'] = nb_epoch
        self.callback.params['nb_sample'] = nb_sample
        self.callback.on_train_begin()

        return self.callback

    def batch_begin(self, batch, size):
        logs = {
            'batch': batch,
            'size': size,
        }
        self.callback.on_batch_end(batch, logs)

    def batch_end(self, batch, size, loss=0, acc=0):

        logs = {
            'loss': loss,
            'acc': acc,
            'batch': batch,
            'size': size,
        }
        self.callback.on_batch_end(batch, logs)

    def epoch_end(self, epoch, loss=0, val_loss=0, acc=0, val_acc=0):
        """

        :type epoch: integer starting with 0
        """
        logs = {
            'loss': loss,
            'val_loss': val_loss,
            'acc': acc,
            'val_acc': val_acc,
            'epoch': epoch
        }
        self.callback.on_epoch_end(epoch, logs)

    def end(self):
        self.monitoringThread.stop()
        self.job_backend.sync_weights()
        self.job_backend.set_status('DONE')

    def model_to_graph(self, model):
        graph = {'nodes': [], 'links': [], 'groups': []}

        map = {'idx': {}, 'flatten': [], 'group_pointer': -1}

        def layer_to_dict(layer):
            info = {}

            if isinstance(layer, Dropout):
                info['dropout'] = layer.p

            if isinstance(layer, Dense):
                info['neurons'] = layer.output_dim
                info['activaton'] = layer.activation.__name__

            if isinstance(layer, Convolution2D):
                info['receptiveField'] = [layer.nb_col, layer.nb_row]
                info['features'] = layer.nb_filter

            if isinstance(layer, MaxPooling2D):
                info['poolingArea'] = [layer.pool_size[0], layer.pool_size[1]]

            if isinstance(layer, Embedding):
                info['inputDim'] = layer.input_dim
                info['outputDim'] = layer.output_dim
                info['dropout'] = layer.dropout

            if isinstance(layer, Activation):
                info['activaton'] = layer.activation.__name__

            if isinstance(layer, Merge):
                info['mode'] = layer.mode

            if isinstance(layer, RepeatVector):
                info['n'] = layer.n

            if isinstance(layer, InputLayer):
                info['inputShape'] = layer.input_shape

            info['outputShape'] = layer.output_shape

            return {
                'name': layer.name,
                'class': type(layer).__name__,
                'width': 60,
                'height': 40,
                'info': info
            }

        def add_layer(layer):
            graph['nodes'].append(layer_to_dict(layer))
            map['flatten'].append(layer)
            map['idx'][layer.name] = len(graph['nodes']) - 1
            # if map['group_pointer'] >= 0:
            #     graph['groups'][map['group_pointer']].append(len(graph['nodes'])-1)

        def get_idx(layer):
            return map['idx'][layer.name]

        def extract_layers(layers):
            for layer in layers:
                if layer not in map['flatten']:
                    add_layer(layer)
                    if hasattr(layer, 'layers') and isinstance(
                            layer.layers, list):
                        # graph['groups'].append([])
                        # map['group_pointer'] += 1
                        extract_layers(layer.layers)
                        # map['group_pointer'] -= 1
                    else:
                        for inbound_node in layer.inbound_nodes:
                            extract_layers(inbound_node.inbound_layers)

        extract_layers(model.layers)

        # build edges
        for layer in map['flatten']:

            for inbound_node in layer.inbound_nodes:
                for inbound_layer in inbound_node.inbound_layers:
                    graph['links'].append({
                        'source': get_idx(inbound_layer),
                        'target': get_idx(layer),
                    })

            if hasattr(layer, 'layers') and isinstance(layer.layers, list):
                graph['links'].append({
                    'source': get_idx(layer.layers[-1]),
                    'target': get_idx(layer),
                })

        return graph

    def model_to_layers(self, model):
        layers = []

        # from keras.models import Sequential
        # if isinstance(model, Sequential):
        #     for layer in model.layers:
        #         layers[]

        # 'fc': 'Dense',
        # 'conv': 'Convolutional2D',
        # 'pool': 'MaxPooling2D',
        # 'pool_average': 'AveragePooling2D',
        # 'zero_padding': 'ZeroPadding2D',
        # 'upsampling': 'UpSampling2D',
        # 'flatten': 'Flatten',
        # 'merge': 'Merge',

        layer_type_map = {
            'InputLayer': 'fc',
            'Dense': 'fc',
            'Convolution2D': 'conv',
            'MaxPooling2D': 'pool',
            'AveragePooling2D': 'pool_average',
            'ZeroPadding2D': 'zero_padding',
            'UpSampling2D': 'upsampling',
            'Flatten': 'flatten',
            'Merge': 'merge',
        }

        def get_input_layer(layer):
            if isinstance(layer, Activation) or isinstance(layer, Dropout):
                return get_input_layer(
                    layer.inbound_nodes[0].inbound_layers[0])

            return layer

        for keras_layer in model.layers:
            name = type(keras_layer).__name__

            if name in layer_type_map:
                typeStr = layer_type_map[name]
            else:
                typeStr = name

            layer = {
                'id': keras_layer.name,
                'name': keras_layer.name,
                'type': typeStr,
                'connectedTo': [],
                'receptiveField': {
                    'width': 0,
                    'height': 0
                },
                'poolingArea': {
                    'width': 0,
                    'height': 0
                },
                'padding': [],
                'features': 0,
            }

            if isinstance(keras_layer, Convolution2D):
                layer['receptiveField']['width'] = keras_layer.nb_col
                layer['receptiveField']['height'] = keras_layer.nb_row
                layer['features'] = keras_layer.nb_filter
            if isinstance(keras_layer, MaxPooling2D):
                layer['poolingArea']['width'] = keras_layer.pool_size[0]
                layer['poolingArea']['height'] = keras_layer.pool_size[1]

            if isinstance(keras_layer, InputLayer):
                if len(keras_layer.input_shape) == 4:

                    # grayscale
                    if keras_layer.input_shape[1] == 1:
                        layer['inputType'] = 'image'
                        layer['width'] = keras_layer.input_shape[2]
                        layer['height'] = keras_layer.input_shape[3]

                    elif keras_layer.input_shape[1] == 3:
                        layer['inputType'] = 'image_rgb'
                        layer['width'] = keras_layer.input_shape[2]
                        layer['height'] = keras_layer.input_shape[3]

                elif len(keras_layer.input_shape) == 2:
                    layer['inputType'] = 'list'
                    layer['width'] = keras_layer.input_shape[1]
                    layer['height'] = 1
                else:
                    layer['inputType'] = 'custom'
                    layer['shape'] = keras_layer.input_shape

            if isinstance(keras_layer, Dense):
                layer['weight'] = keras_layer.output_dim

            if isinstance(keras_layer, Dropout):
                layers[-1][0]['dropout'] = keras_layer.p

                continue

            if isinstance(keras_layer, Activation):
                activation_function = str(keras_layer.activation)
                layers[-1][0][
                    'activationFunction'] = activation_function.split(' ')[1]

                continue

            for inbound_node in keras_layer.inbound_nodes:
                for inbound_layer in inbound_node.inbound_layers:
                    inbound_layer = get_input_layer(inbound_layer)
                    layer['connectedTo'].append(inbound_layer.name)

            layers.append([layer])

        return layers