Ejemplo n.º 1
0
def create_simple(id, last_weights=False):
    job_backend = JobBackend()
    job_backend.load(id)
    job_model = job_backend.get_job_model()

    if last_weights:
        weights_path = job_model.get_weights_filepath_latest()
    else:
        weights_path = job_model.get_weights_filepath_best()

    if not os.path.exists(weights_path) or os.path.getsize(weights_path) == 0:
        weight_url = job_backend.get_best_weight_url(id)
        if not weight_url:
            raise Exception("No weights available for this job.")

        print(("Download weights %s to %s .." % (weight_url, weights_path)))
        ensure_dir(os.path.dirname(weights_path))

        f = open(weights_path, 'wb')
        f.write(urllib.urlopen(weight_url).read())
        f.close()

    model.job_prepare(job_model)

    general_logger = GeneralLogger(job_backend=job_backend)
    trainer = Trainer(job_backend, general_logger)

    job_model.set_input_shape(trainer)

    model = job_model.get_built_model(trainer)

    job_model.load_weights(model, weights_path)

    return job_model, model
    def start_model(self, parsed_args):
        from aetros import keras_model_utils
        from aetros.backend import JobBackend
        from aetros.logger import GeneralLogger
        from aetros.Trainer import Trainer
        from aetros.keras_model_utils import ensure_dir

        if not parsed_args.id:
            print("No job id given.")
            sys.exit(1)

        print("...")
        self.lock.acquire()
        job_backend = JobBackend(parsed_args.id)
        job_backend.load_light_job()
        self.job_model = job_backend.get_job_model()

        if parsed_args.weights:
            weights_path = parsed_args.weights
        elif parsed_args.latest:
            weights_path = self.job_model.get_weights_filepath_latest()
        else:
            weights_path = self.job_model.get_weights_filepath_best()

        print("Check weights ...")

        if not os.path.exists(weights_path) or os.path.getsize(
                weights_path) == 0:
            weight_url = job_backend.get_best_weight_url(parsed_args.id)
            if not weight_url:
                print("No weights available for this job.")
                exit(1)

            print(
                ("Download weights %s to %s .." % (weight_url, weights_path)))
            ensure_dir(os.path.dirname(weights_path))

            f = open(weights_path, 'wb')
            f.write(urllib.urlopen(weight_url).read())
            f.close()

        keras_model_utils.job_prepare(job_backend)

        trainer = Trainer(job_backend)

        self.job_model.set_input_shape(trainer)

        print("Loading model ...")
        model = self.job_model.get_built_model(trainer)

        print(("Load weights %s ..." % (weights_path, )))
        self.job_model.load_weights(model, weights_path)
        print("Locked and loaded.")

        self.lock.release()

        return model
Ejemplo n.º 3
0
def predict(job_id,
            file_paths,
            insights=False,
            weights_path=None,
            api_key=None):
    print("Prepare model ...")
    job_backend = JobBackend(api_key=api_key)
    job_backend.load(job_id)

    job_model = job_backend.get_job_model()

    log = io.open(tempfile.mktemp(), 'w', encoding='utf8')
    log.truncate()

    keras_model_utils.job_prepare(job_model)

    if not weights_path:
        weight_path = job_model.get_weights_filepath_best()
        if not os.path.exists(weight_path) or os.path.getsize(
                weight_path) == 0:
            weight_url = job_backend.get_best_weight_url(job_id)
            if not weight_url:
                print("No weights available for this job.")
                exit(1)

            print("Download weights %s to %s .." % (weight_url, weight_path))
            ensure_dir(os.path.dirname(weight_path))

            f = open(weight_path, 'wb')
            f.write(urllib.urlopen(weight_url).read())
            f.close()

    from .logger import GeneralLogger
    from .Trainer import Trainer

    general_logger = GeneralLogger(log, job_backend)
    trainer = Trainer(job_backend, general_logger)
    job_model.set_input_shape(trainer)

    print("Load model and compile ...")

    model = job_model.get_built_model(trainer)

    from aetros.keras import load_weights
    load_weights(model, weights_path)

    inputs = []
    for idx, file_path in enumerate(file_paths):
        inputs.append(
            job_model.convert_file_to_input_node(
                file_path, job_model.get_input_node(idx)))

    print("Start prediction ...")

    prediction = job_model.predict(model, np.array(inputs))
    print(json.dumps(prediction, indent=4, default=invalid_json_values))
Ejemplo n.º 4
0
    def start_model(self, parsed_args):
        from aetros import keras_model_utils
        from aetros.backend import JobBackend
        from aetros.logger import GeneralLogger
        from aetros.Trainer import Trainer
        from aetros.keras_model_utils import ensure_dir

        if not parsed_args.id:
            print("No job id given.")
            sys.exit(1)

        print("...")
        self.lock.acquire()
        job_backend = JobBackend(parsed_args.id)
        job_backend.load_light_job()
        self.job_model = job_backend.get_job_model()

        if parsed_args.weights:
            weights_path = parsed_args.weights
        elif parsed_args.latest:
            weights_path = self.job_model.get_weights_filepath_latest()
        else:
            weights_path = self.job_model.get_weights_filepath_best()

        print("Check weights ...")

        if not os.path.exists(weights_path) or os.path.getsize(weights_path) == 0:
            weight_url = job_backend.get_best_weight_url(parsed_args.id)
            if not weight_url:
                print("No weights available for this job.")
                exit(1)

            print(("Download weights %s to %s .." % (weight_url, weights_path)))
            ensure_dir(os.path.dirname(weights_path))

            f = open(weights_path, 'wb')
            f.write(urllib.urlopen(weight_url).read())
            f.close()

        trainer = Trainer(job_backend)

        self.job_model.set_input_shape(trainer)

        print("Loading model ...")
        model = self.job_model.get_built_model(trainer)

        print(("Load weights %s ..." % (weights_path,)))
        self.job_model.load_weights(model, weights_path)
        print("Locked and loaded.")

        self.lock.release()

        return model