Ejemplo n.º 1
0
    def __init__(self, pacman_agent=agent.HumanAgent()):
        self.pacman_agent = pacman_agent

        pygame.init()
        pygame.font.init()

        self.screen = pygame.display.set_mode(config.SCREEN_SIZE)

        self.game = game.Game(self.pacman_agent)
Ejemplo n.º 2
0
def getAgent(agentType, playerNum):
    if agentType == 'human':
        return agt.HumanAgent(playerNum)
    elif agentType == 'random':
        return agt.RandomAgent()
    elif agentType == 'simple':
        return agt.SimpleAgent()
    elif agentType == 'reflex':
        return agt.ReflexAgent(playerNum)
    elif agentType == 'simple++':
        return agt.SimpleEnhancedAgent(playerNum)
Ejemplo n.º 3
0
def create_player_list(args):
    # Only need board_params and players in args
    board_params = args["board_params"]

    list_players = []
    for i, player_args in enumerate(args["players"]):
        kwargs = removekey(player_args, "agent")
        if player_args["agent"] == "RandomAgent":
            list_players.append(agent.RandomAgent(f"Random_{i}"))
        elif player_args["agent"] == "PeacefulAgent":
            list_players.append(agent.PeacefulAgent(f"Peaceful_{i}"))
        elif player_args["agent"] == "FlatMCPlayer":
            list_players.append(
                agent.FlatMCPlayer(name=f'flatMC_{i}', **kwargs))
        elif player_args["agent"] == "UCTPlayer":
            list_players.append(agent.UCTPlayer(name=f'UCT_{i}', **kwargs))
        elif player_args["agent"] == "PUCTPlayer":
            world = World(board_params["path_board"])
            board = Board(
                world,
                [agent.RandomAgent('Random1'),
                 agent.RandomAgent('Random2')])
            board.setPreferences(board_params)
            puct = load_puct(board, player_args)
            list_players.append(puct)
        elif player_args["agent"] == "NetPlayer":
            world = World(board_params["path_board"])
            board = Board(
                world,
                [agent.RandomAgent('Random1'),
                 agent.RandomAgent('Random2')])
            board.setPreferences(board_params)
            netPlayer = load_NetPlayer(board, player_args)
            list_players.append(netPlayer)
        elif player_args["agent"] == "Human":
            hp_name = player_args["name"] if "name" in player_args else "human"
            hp = agent.HumanAgent(name=hp_name)
            list_players.append(hp)

    return list_players
Ejemplo n.º 4
0
def main(args=None):
    from optparse import OptionParser
    usage = "usage: %prog [options]"
    parser = OptionParser(usage=usage)

    parser.add_option("-p",
                      "--player1",
                      dest="player1",
                      default="random",
                      help="Choose type of first player")

    (opts, args) = parser.parse_args(args)

    evalArgs = load_weights()
    evalFn = aiAgents.nnetEval

    p1 = None
    if opts.player1 == 'random':
        p1 = agent.RandomAgent(game.Game.TOKENS[0])
    elif opts.player1 == 'reflex':
        p1 = aiAgents.TDAgent(game.Game.TOKENS[0], evalArgs)
    elif opts.player1 == 'expectiminimax':
        p1 = aiAgents.ExpectiMiniMaxAgent(game.Game.TOKENS[0], evalFn,
                                          evalArgs)
    elif opts.player1 == 'human':
        p1 = agent.HumanAgent(game.Game.TOKENS[0])


#    p2 = agent.RandomAgent(game.Game.TOKENS[1])
    p2 = aiAgents.ExpectiMiniMaxAgent(game.Game.TOKENS[1], evalFn, evalArgs)
    if p1 is None:
        print "Please specify legitimate player"
        import sys
        sys.exit(1)

    play([p1, p2])
Ejemplo n.º 5
0
import agent
import GUI
import MCTS

print('input side: \'black\' or \'white\'')
side = input()
print('input time limit for tree move (one number in seconds)')
move_time = float(input())
agent1 = MCTS.MCTS('../weights/gomoku_nn',
                   '../weights/gomoku_nn',
                   sim_number=10000,
                   linear=False,
                   time=move_time,
                   rollout_depth=10)
agent2 = agent.HumanAgent()
if side == 'black':
    agent1, agent2 = agent2, agent1
GUI.run_gui(agent1, agent2, delay=0)
Ejemplo n.º 6
0
import agent
from util import printc, bcolors

if len(sys.argv) != 4:
    print "Incorrect number of arguments. Please refer to the Readme file"
    exit()

n = int(sys.argv[3])
depth = 2
width = 4
agents = [None, None]

if sys.argv[1] == "MCTreeSearch":
    agents[0] = agent.MCTreeSearchAgent()
elif sys.argv[1] == "HumanAgent":
    agents[0] = agent.HumanAgent(0)
elif sys.argv[1] == "PureMC":
    agents[0] = agent.PureMCAgent()
elif sys.argv[1] == "Minimax":
    agents[0] = agent.MinimaxAgent()

if sys.argv[2] == "MCTreeSearch":
    agents[1] = agent.MCTreeSearchAgent()
elif sys.argv[2] == "HumanAgent":
    agents[1] = agent.HumanAgent(1)
elif sys.argv[2] == "PureMC":
    agents[1] = agent.PureMCAgent()
elif sys.argv[2] == "Minimax":
    agents[1] = agent.MinimaxAgent()

#agent = [agent.MCTreeSearchAgent(agent.twoPinAwayPolicy, agent.twoPinAwayPolicy, 1000), agent.HumanAgent(1)]
Ejemplo n.º 7
0
def main(args=None):
    from optparse import OptionParser
    usage = "usage: %prog [options]"
    parser = OptionParser(usage=usage)
    parser.add_option("-t",
                      "--train",
                      dest="train",
                      action="store_true",
                      default=False,
                      help="Train TD Player")
    parser.add_option("-d",
                      "--draw",
                      dest="draw",
                      action="store_true",
                      default=False,
                      help="Draw game")
    parser.add_option("-n",
                      "--num",
                      dest="numgames",
                      default=1,
                      help="Num games to play")
    parser.add_option("-p",
                      "--player1",
                      dest="player1",
                      default="random",
                      help="Choose type of first player")
    parser.add_option("-e",
                      "--eval",
                      dest="eval",
                      action="store_true",
                      default=False,
                      help="Play with the better eval function for player")

    (opts, args) = parser.parse_args(args)

    weights = None
    if opts.train:
        weights = train()

    if opts.eval:
        weights = load_weights(weights)
        evalFn = submission.logLinearEvaluation
        evalArgs = weights
    else:
        evalFn = submission.simpleEvaluation
        evalArgs = None

    p1 = None
    if opts.player1 == 'random':
        p1 = agent.RandomAgent(game.Game.TOKENS[0])
    elif opts.player1 == 'reflex':
        p1 = submission.ReflexAgent(game.Game.TOKENS[0], evalFn, evalArgs)
    elif opts.player1 == 'expectimax':
        p1 = submission.ExpectimaxAgent(game.Game.TOKENS[0], evalFn, evalArgs)
    elif opts.player1 == 'human':
        p1 = agent.HumanAgent(game.Game.TOKENS[0])

    p2 = agent.RandomAgent(game.Game.TOKENS[1])

    if p1 is None:
        print "Please specify legitimate player"
        import sys
        sys.exit(1)

    test([p1, p2], numGames=int(opts.numgames), draw=opts.draw)
Ejemplo n.º 8
0
def main(args=None):
    import sys
    print("Please choose the type of agent  human or TDagent or random")
    line = sys.stdin.readline()

    from optparse import OptionParser
    usage = "usage: %prog [options]"
    parser = OptionParser(usage=usage)

    parser.add_option("-d",
                      "--draw",
                      dest="draw",
                      action="store_true",
                      default=False,
                      help="Draw game")
    parser.add_option("-n",
                      "--num",
                      dest="numgames",
                      default=1,
                      help="Num games to play")
    parser.add_option("-p",
                      "--player1",
                      dest="player1",
                      default=str(line.strip()),
                      help="Choose type of first player")
    parser.add_option("-e",
                      "--eval",
                      dest="eval",
                      action="store_true",
                      default=True,
                      help="Play with the better eval function for player")

    (opts, args) = parser.parse_args(args)

    weights = None
    weights1 = None

    if opts.eval:
        weights, weights1 = load_weights(weights, weights1)

        evalArgs = weights
        evalArgs1 = weights1
        evalFn = aiAgents.nnetEval
    print("The choosen agent is: " + str(opts.player1))
    p1 = None

    if str(opts.player1) == 'random':
        p1 = agent.RandomAgent(game.Game.TOKENS[0])
        #print p1

    elif opts.player1 == 'TDagent':
        p1 = aiAgents.TDAgent(game.Game.TOKENS[0], evalArgs1)
    elif opts.player1 == 'expectimax':
        p1 = aiAgents.ExpectimaxAgent(game.Game.TOKENS[0], evalFn, evalArgs)
    elif opts.player1 == 'expectiminimax':
        p1 = aiAgents.ExpectiMiniMaxAsgent(game.Game.TOKENS[0], evalFn,
                                           evalArgs)
    elif opts.player1 == 'human':
        p1 = agent.HumanAgent(game.Game.TOKENS[0])

    p2 = aiAgents.TDAgent(game.Game.TOKENS[1], evalArgs)
    #    p2 = aiAgents.ExpectiMiniMaxAgent(game.Game.TOKENS[1],evalFn,evalArgs)

    if opts.player1 == 'random':
        test([p1, p2], numGames=int(opts.numgames), draw=opts.draw)
        print("o is random")
        print("x is the agent")
    if opts.player1 == 'TDagent':
        #test([p1,p2],numGames=int(opts.numgames),draw=opts.draw)

        play([p1, p2])
    if opts.player1 == 'human':
        play([p1, p2])
        print("o is td(0)")
        print("x is the agent td(0.5)")
    if p1 is None:
        print "Please specify legitimate player"
        import sys
        sys.exit(1)
Ejemplo n.º 9
0
def main(args=None):
    # Parse command line arguments
    argNames = [
        '-trainGames', '-run', '-p', '-test', '-agent', '-opp', '-tournament',
        '-human', '-verbose'
    ]
    parser = argparse.ArgumentParser(description='Process input parameters.')
    for arg in argNames:
        parser.add_argument(arg)
    namespace = parser.parse_args()

    numPlayers = int(getattr(namespace, 'p')) if getattr(namespace, 'p') else 3
    numTrainGames = int(getattr(namespace, 'trainGames')) if getattr(
        namespace, 'trainGames') else 50
    numTestGames = int(getattr(namespace, 'test')) if getattr(
        namespace, 'test') else 100
    numRuns = int(getattr(namespace, 'run')) if getattr(namespace,
                                                        'run') else 10
    agentType = getattr(namespace, 'agent') if getattr(namespace,
                                                       'agent') else 'model'
    oppType = getattr(namespace, 'opp') if getattr(namespace,
                                                   'opp') else 'simple'
    isTournament = (getattr(namespace, 'tournament') == 'y')
    isHuman = (getattr(namespace, 'human') == 'y')
    verbose = (getattr(namespace, 'verbose') == 'y')

    winRates = []
    for i in range(numRuns):

        # Play a game with human agent
        if isHuman:
            agents = [agent.HumanAgent(0)]
            for j in range(1, numPlayers):
                if oppType == 'random':
                    agents.append(agent.RandomAgent(j))
                elif oppType == 'simple':
                    agents.append(
                        agent.ReflexAgent(j, evaluation.simpleEvaluation))
                elif oppType == 'honest':
                    agents.append(agent.HonestAgent(j))
                elif oppType == 'dishonest':
                    agents.append(agent.DishonestAgent(j))
                elif oppType == 'bs':
                    agents.append(agent.AlwaysCallBSAgent(j))
            g = game.Game(numPlayers, NUM_DECKS)
            run_game(g, agents)

        # Play a game with computer agent
        else:
            agents = []
            if agentType == 'random':
                agents.append(agent.RandomAgent(0))
            elif agentType == 'simple':
                agents.append(agent.ReflexAgent(0,
                                                evaluation.simpleEvaluation))
            elif agentType == 'honest':
                agents.append(agent.HonestAgent(0))
            elif agentType == 'dishonest':
                agents.append(agent.DishonestAgent(0))
            elif agentType == 'bs':
                agents.append(agent.AlwaysCallBSAgent(0))
            elif agentType == 'reflex':
                if isTournament:
                    w = tournament(numPlayers, numTrainGames)
                    a = agent.ReflexAgent(0, logLinearEvaluation, w)
                    agents.append(a)
                else:
                    w = train(numPlayers, numTrainGames)
                    a = agent.ReflexAgent(0, logLinearEvaluation, w)
                    agents.append(a)
            elif agentType == 'model':
                if isTournament:
                    w = tournament(numPlayers, numTrainGames, isModel=True)
                    a = agent.ModelReflexAgent(0, numPlayers,
                                               logLinearEvaluation, w)
                    agents.append(a)
                else:
                    w = train(numPlayers, numTrainGames, isModel=True)
                    a = agent.ModelReflexAgent(0, numPlayers,
                                               logLinearEvaluation, w)
                    agents.append(a)

            for j in range(1, numPlayers):
                if oppType == 'random':
                    agents.append(agent.RandomAgent(j))
                elif oppType == 'simple':
                    agents.append(
                        agent.ReflexAgent(j, evaluation.simpleEvaluation))
                elif oppType == 'honest':
                    agents.append(agent.HonestAgent(j))
                elif oppType == 'dishonest':
                    agents.append(agent.DishonestAgent(j))
                elif oppType == 'bs':
                    agents.append(agent.AlwaysCallBSAgent(j))

            winRates.append(test(agents, numTestGames, verbose))

    if winRates:
        avgWinRate = sum(winRates) / numRuns
        print "Average win rate of agent is: {}".format(avgWinRate)
Ejemplo n.º 10
0
            print("r was played in the game {} times".format(number_of_r))

            dict_of_prs = {
                "p": number_of_p,
                "r": number_of_r,
                "s": number_of_s
            }
            most_freq = max(dict_of_prs, key=dict_of_prs.get)

            print('Most played move: {}'.format(most_freq))
            print('=' * 20)

    def compare(self, move_a1, move_a2):
        if move_a1 == move_a2:
            return 0
        elif (move_a1 == "r" and move_a2 == "p"
              or move_a1 == "p" and move_a2 == "s"
              or move_a1 == "s" and move_a2 == "r"):
            return 2
        else:
            return 1


human = agent.HumanAgent()
Computer = agent.InstructorAgent()

game = Game(human, Computer)

game.play(5)
game.summary()