Ejemplo n.º 1
0
import gym
from agent import DDPG

env = gym.make('Pendulum-v0')

agent = DDPG(env)
agent.load_model()

state = env.reset()

cumulative_reward = 0
for i in range(200):
    action = agent.get_action(state)
    env.render()
    state, reward, _, _ = env.step(action * 2)
    cumulative_reward += reward
print('Cumulative Reward: {}'.format(cumulative_reward))
Ejemplo n.º 2
0
from collections import deque
import gym
import numpy as np
from agent import DDPG
from utils import get_screen

env = gym.make('Pendulum-v0')

agent = DDPG(env, memory=False)
agent.load_model()

env.reset()
pixel = env.render(mode='rgb_array')
state = deque([get_screen(pixel) for _ in range(3)], maxlen=3)
cumulative_reward = 0
for timestep in range(200):
    action = agent.get_action(np.array(state)[np.newaxis])
    _, reward, _, _ = env.step(action * 2)
    pixel = env.render(mode='rgb_array')
    state_ = state.copy()
    state_.append(get_screen(pixel))
    state = state_
    cumulative_reward += reward
print('Cumulative Reward: {}'.format(cumulative_reward))
Ejemplo n.º 3
0
np.random.seed(42)
env.seed(42)
torch.manual_seed(42)
torch.cuda.manual_seed(42)

writer = SummaryWriter(log_dir='logs/')
agent = DDPG(env, writer)

all_timesteps = 0

for e in range(epoch):
    noise = OUActionNoise(env.action_space.shape[0])
    state = env.reset()
    cumulative_reward = 0
    for timestep in range(200):
        action = agent.get_action(state, noise, timestep)
        state_, reward, done, _ = env.step(action * env.action_space.high[0])
        # env.render()
        agent.store_transition(state, action, state_, reward, done)

        state = state_
        cumulative_reward += reward

        agent.update(all_timesteps)
        all_timesteps += 1
    print('Epoch : {} / {}, Cumulative Reward : {}'.format(
        e, epoch, cumulative_reward))
    writer.add_scalar("reward", cumulative_reward, e)

agent.save_model()
Ejemplo n.º 4
0
torch.manual_seed(42)
torch.cuda.manual_seed(42)

writer = SummaryWriter(log_dir='logs/')
agent = DDPG(env, writer)

all_timesteps = 0

for e in range(epoch):
    noise = OUActionNoise(env.action_space.shape[0])
    env.reset()
    pixel = env.render(mode='rgb_array')
    state = deque([get_screen(pixel) for _ in range(3)], maxlen=3)
    cumulative_reward = 0
    for timestep in range(200):
        action = agent.get_action(np.array(state)[np.newaxis], noise, timestep)
        _, reward, done, _ = env.step(action * env.action_space.high[0])
        pixel = env.render(mode='rgb_array')
        state_ = state.copy()
        state_.append(get_screen(pixel))
        agent.store_transition(np.array(state), action, np.array(state_),
                               reward, done)

        state = state_
        cumulative_reward += reward

        agent.update(all_timesteps, batch_size=16)
        all_timesteps += 1
    print('Epoch : {} / {}, Cumulative Reward : {}'.format(
        e, epoch, cumulative_reward))
    writer.add_scalar("reward", cumulative_reward, e)