Ejemplo n.º 1
0
 def test_MLEGreedyAgent_works(self):
     experiment = _setup_experiment()
     experiment.agent_class = allocation_agents.MLEGreedyAgent
     experiment.agent_params = allocation_agents.MLEGreedyAgentParams(
         burn_steps=5, window=10, alpha=5.0)
     result = attention_allocation_experiment.run(experiment)
     # Tests that the result is a valid json string.
     result = json.loads(result)
 def test_allocate_beliefs_greedy(self):
   env_params = attention_allocation.Params(
       n_locations=4,
       prior_incident_counts=(10, 10, 10, 10),
       n_attention_units=5,
       incident_rates=[0, 0, 0, 0])
   env = attention_allocation.LocationAllocationEnv(params=env_params)
   agent_params = allocation_agents.MLEGreedyAgentParams(epsilon=0.0)
   agent = allocation_agents.MLEGreedyAgent(
       action_space=env.action_space,
       observation_space=env.observation_space,
       reward_fn=rewards.VectorSumReward('incidents_seen'),
       params=agent_params)
   allocation = agent._allocate(5, [5, 2, 1, 1])
   self.assertTrue(np.all(np.equal(allocation, [4, 1, 0, 0])))
 def test_allocate_beliefs_fair_unsatisfiable(self):
   env_params = attention_allocation.Params(
       n_locations=4,
       prior_incident_counts=(10, 10, 10, 10),
       n_attention_units=5,
       incident_rates=[0, 0, 0, 0])
   env = attention_allocation.LocationAllocationEnv(params=env_params)
   agent_params = allocation_agents.MLEGreedyAgentParams(
       epsilon=0.0, alpha=0.25)
   agent = allocation_agents.MLEGreedyAgent(
       action_space=env.action_space,
       observation_space=env.observation_space,
       reward_fn=rewards.VectorSumReward('incidents_seen'),
       params=agent_params)
   with self.assertRaises(gym.error.InvalidAction):
     agent._allocate(5, [5, 2, 1, 1])
def mle_greedy_alpha5_agent_resource_all_dynamics():
    """Run experiments on a greedy-epsilon mle agent, epsilon=0.1, across dynamics."""
    dynamic_values_to_test = [0.0, 0.01, 0.05, 0.1, 0.15]
    experiment = _setup_experiment()
    experiment.agent_class = allocation_agents.MLEGreedyAgent
    experiment.agent_params = allocation_agents.MLEGreedyAgentParams(
        burn_steps=25, window=100, alpha=0.75)

    reports_dict = {}

    for value in dynamic_values_to_test:
        print('Running an experiment...')
        experiment.env_params.dynamic_rate = value
        json_report = attention_allocation_experiment.run(experiment)
        report = json.loads(json_report)

        print('\n\nMLE Greedy Fair Agent, 6 attention units, alpha=0.75')
        _print_discovered_missed_incidents_report(value, report)
        output_filename = 'mle_greedy_fair_alpha75_6units_%f.json' % value
        with open(os.path.join(FLAGS.output_dir, output_filename), 'w') as f:
            json.dump(report, f)

        reports_dict[value] = json_report
    return reports_dict