Ejemplo n.º 1
0
def over(C,solver,class_weight):
    clf = LogisticRegression(C=C, solver=solver, class_weight=class_weight)
    clf.fit(log['train_feature'], log['train_category'])
    train_sc=ai_def.estimation(clf, log['train_feature'])
    valid_sc=ai_def.estimation(clf, log['valid_feature'])
    test_sc=ai_def.estimation(clf, log['test_feature'])
    train_accuracy = accuracy_score(log['train_category'],train_sc)
    valid_accuracy = accuracy_score(log['valid_category'],valid_sc)
    test_accuracy = accuracy_score(log['test_category'],test_sc)
    result=[]
    result.append([C,train_accuracy, valid_accuracy, test_accuracy])
    return result
Ejemplo n.º 2
0
"""
55. 混同行列の作成
52で学習したロジスティック回帰モデルの混同行列
(confusion matrix)を,
学習データおよび評価データ上で作成せよ
"""
from sklearn.metrics import confusion_matrix
import ai_def

log=ai_def.Lg()
clf=ai_def.load_model()
train_score=ai_def.estimation(clf,log['train_feature'])
train_matrix = confusion_matrix(log['train_category'],train_score)
print(train_matrix)
test_score=ai_def.estimation(clf,log['test_feature'])
test_matrix = confusion_matrix(log['test_category'],test_score)
print(test_matrix)
Ejemplo n.º 3
0
"""
import ai_def
import numpy as np
from tqdm import tqdm
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt

log=ai_def.Lg()
result=[]

for C in tqdm(np.logspace(-5,4,10,base=10)):
    lg=LogisticRegression(random_state=123, max_iter=10000, C=C)
    clf=lg.fit(log['train_feature'], log['train_category'])

    train_sc=ai_def.estimation(clf, log['train_feature'])
    valid_sc=ai_def.estimation(clf, log['valid_feature'])
    test_sc=ai_def.estimation(clf, log['test_feature'])

    train_accuracy = accuracy_score(log['train_category'],train_sc)
    valid_accuracy = accuracy_score(log['valid_category'],valid_sc)
    test_accuracy = accuracy_score(log['test_category'],test_sc)

    result.append([C,train_accuracy, valid_accuracy, test_accuracy])

result=np.array(result).T
plt.plot(result[0],result[1], label='train')
plt.plot(result[0],result[2], label='valid')
plt.plot(result[0],result[3], label='test')
plt.ylim(0,1.1)
plt.ylabel('Accuracy')