Ejemplo n.º 1
0
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()

    ########################################################################
    # Gather Input and Output paths from environment variables
    ########################################################################
    test_images_path, predictions_output_path = gather_input_output_path()

    ########################################################################
    # Gather Image IDS
    ########################################################################
    image_ids = gather_image_ids(test_images_path)

    ########################################################################
    # Generate Predictions
    ########################################################################
    evaluate(AICROWD_TEST_IMAGES_PATH, AICROWD_PREDICTIONS_OUTPUT_PATH)
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success(
        {"predictions_output_path": predictions_output_path})
Ejemplo n.º 2
0
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()

    ########################################################################
    # Load Tests Meta Data file
    #       and iterate over all its rows
    #
    #       Each Row contains the following information :
    #
    #       - hashed_id  : a unique id for each test image
    #       - filename   : filename of the image
    #       - country    : Country where this image was taken
    #       - continent  : Continent where this image was taken
    ########################################################################

    OUTPUT_LINES = []
    HEADER = ['hashed_id'] + VALID_SNAKE_SPECIES
    OUTPUT_LINES.append(",".join(HEADER))

    tests_df = pd.read_csv(AICROWD_TEST_METADATA_PATH)
    for _idx, row in tests_df.iterrows():
        image_id = row["hashed_id"]
        country = row["country"]
        continent = row["continent"]
        filename = row["filename"]
        filepath = os.path.join(AICROWD_TEST_IMAGES_PATH, filename)

        predictions = get_random_prediction(image_id)
        PREDICTION_LINE = [image_id] + [str(x) for x in predictions.tolist()]
        OUTPUT_LINES.append(",".join(PREDICTION_LINE))

        ########################################################################
        # Register Prediction
        #
        # Note, this prediction register is not a requirement. It is used to
        # provide you feedback of how far are you in the overall evaluation.
        # In the absence of it, the evaluation will still work, but you
        # will see progress of the evaluation as 0 until it is complete
        #
        # Here you simply announce that you completed processing a set of
        # image_ids
        ########################################################################
        aicrowd_helpers.execution_progress({
            "image_ids": [image_id]  ### NOTE : This is an array of image_ids 
        })

    # Write output
    fp = open(AICROWD_PREDICTIONS_OUTPUT_PATH, "w")
    fp.write("\n".join(OUTPUT_LINES))
    fp.close()
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success(
        {"predictions_output_path": AICROWD_PREDICTIONS_OUTPUT_PATH})
Ejemplo n.º 3
0
def run():
	########################################################################
	# Register Prediction Start
	########################################################################
	aicrowd_helpers.execution_start()

	########################################################################
	# Gather Input and Output paths from environment variables
	########################################################################
	test_images_path, predictions_output_path = gather_input_output_path()

	########################################################################
	# Generate Predictions
	########################################################################
	cfg = get_cfg()
	cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
	cfg.MODEL.WEIGHTS = model_path
	cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold   # set the testing threshold for this model
	cfg.MODEL.ROI_HEADS.NUM_CLASSES = 273
	#cfg.MODEL.DEVICE = "cpu"
	predictor = DefaultPredictor(cfg)
	results = []
	del cfg
	for i in os.listdir(test_images_path):
		img_path =test_images_path + "/" +str(i)
		im = cv2.imread(img_path)
		outputs = predictor(im)
		instances = outputs["instances"].to(cpu_device)
		fname = int(i.split('.')[0])
		result = instances_to_coco_json(instances,fname)
		if(len(result)!=0):
			for ele in result:
				matchId = ele['category_id']
				ele['category_id'] = reverse_id_mapping[str(matchId)]
				results.append(ele)    
			aicrowd_helpers.execution_progress({
				"image_ids" : [fname]
			})





	# Write output
	fp = open(predictions_output_path, "w")
	fp.write(json.dumps(results))
	fp.close()
	########################################################################
	# Register Prediction Complete
	########################################################################
	aicrowd_helpers.execution_success({
	"predictions_output_path" : predictions_output_path
	})
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()

    ########################################################################
    # Gather Input and Output paths from environment variables
    ########################################################################
    test_images_path, predictions_output_path = gather_input_output_path()

    ########################################################################
    # Gather Image IDS
    ########################################################################
    image_ids = gather_image_ids(test_images_path)

    ########################################################################
    # Generate Predictions
    ########################################################################
    predictions = []
    print("Number of images found:", len(image_ids))
    for image_id in image_ids:
        number_of_annotations = np.random.randint(0, MAX_NUMBER_OF_ANNOTATIONS)
        for _idx in range(number_of_annotations):
            print(image_id)
            _annotation = single_annotation(image_id)
            predictions.append(_annotation)
        ########################################################################
        # Register Prediction
        #
        # Note, this prediction register is not a requirement. It is used to
        # provide you feedback of how far are you in the overall evaluation.
        # In the absence of it, the evaluation will still work, but you
        # will see progress of the evaluation as 0 until it is complete
        #
        # Here you simply announce that you completed processing a set of
        # image-ids
        ########################################################################
        aicrowd_helpers.execution_progress({"image_ids": [image_id]})

    # Write output
    fp = open(predictions_output_path, "w")
    fp.write(json.dumps(predictions))
    fp.close()
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success(
        {"predictions_output_path": predictions_output_path})
Ejemplo n.º 5
0
def run():
    aicrowd_helpers.execution_start()

    #MAGIC HAPPENS BELOW
    torch.backends.cudnn.benchmark = True
    device = torch.device("cuda:0")
    assert torch.cuda.is_available()
    precrop, crop = bit_hyperrule.get_resolution_from_dataset(
        'snakes_dataset')  # verify
    valid_tx = tv.transforms.Compose([
        tv.transforms.Resize((crop, crop)),
        tv.transforms.ToTensor(),
        tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ])
    given_df = pd.read_csv(AICROWD_TEST_METADATA_PATH)

    valid_set = SnakeDataset(AICROWD_TEST_IMAGES_PATH,
                             is_train=False,
                             transform=valid_tx,
                             target_transform=None,
                             csv_file=AICROWD_TEST_METADATA_PATH)  # verify
    valid_loader = torch.utils.data.DataLoader(valid_set,
                                               batch_size=32,
                                               shuffle=False,
                                               num_workers=0,
                                               pin_memory=True,
                                               drop_last=False)
    model = models.KNOWN_MODELS['BiT-M-R50x1'](
        head_size=len(VALID_SNAKE_SPECIES), zero_head=True)
    model = torch.nn.DataParallel(model)
    optim = torch.optim.SGD(model.parameters(), lr=0.003, momentum=0.9)
    model_loc = pjoin('models', 'initial.pth.tar')
    checkpoint = torch.load(model_loc, map_location='cpu')
    model.load_state_dict(checkpoint['model'])
    model = model.to(device)
    model.eval()
    results = np.empty((0, 783), float)
    for b, (x, y) in enumerate(
            valid_loader):  #add name to dataset, y must be some random label
        with torch.no_grad():
            x = x.to(device, non_blocking=True)
            y = y.to(device, non_blocking=True)
            logits = model(x)
            softmax_op = torch.nn.Softmax(dim=1)
            probs = softmax_op(logits)
            data_to_save = probs.data.cpu().numpy()
            results = np.concatenate((results, data_to_save), axis=0)
    filenames = given_df['hashed_id'].tolist()
    country_prob = pd.read_csv(
        pjoin('metadata', 'probability_of_species_per_country.csv'))
    country_name = country_prob[['Species/Country']]
    country_dict = {name[0]: i for i, name in enumerate(country_name.values)}
    given_country = given_df[['country']]
    country_list = []
    for country in given_country.values:
        country_list.append(str(country[0]).lower().replace(
            ' ', '-'))  # has to be a better way
    adjusted_results = []

    for i, result in enumerate(results):
        probs = result
        assert len(prob) == 783
        try:
            country_now = country_list[i]
            country_location = country_dict[country_now]
            country_prob_per_this_country = country_prob.loc[[
                country_location
            ]].values[0][1:]
            adjusted = country_prob_per_this_country * probs
            adjusted_results.append(adjusted)  # verify, we need list of list
        except:
            adjusted_results.append(probs)
    assert len(adjusted_results) == len(results)
    #normalize
    normalized_results = adjusted_results / adjusted_results.sum(axis=1)[:,
                                                                         None]

    df = pd.DataFrame(data=normalized_results,
                      index=filenames,
                      columns=VALID_SNAKE_SPECIES)
    df.index.name = 'hashed_id'
    pd.to_csv(AICROWD_PREDICTIONS_OUTPUT_PATH, index=True)

    aicrowd_helpers.execution_success(
        {"predictions_output_path": AICROWD_PREDICTIONS_OUTPUT_PATH})
Ejemplo n.º 6
0
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()

    ########################################################################
    # Gather Input and Output paths from environment variables
    ########################################################################
    test_images_path, predictions_output_path = gather_input_output_path()

    ########################################################################
    # Gather Image Names
    ########################################################################
    image_names = gather_image_names(test_images_path)

    ########################################################################
    # Do your magic here to train the model
    ########################################################################
    # Preprocess first here

    src = (ImageList.from_folder(
        path='fastai-data').split_by_rand_pct(0.0).label_from_folder()
           )  # any folder which has sub-folders will work
    tfms = get_transforms(do_flip=True,
                          flip_vert=False,
                          max_rotate=10.0,
                          max_zoom=1.1,
                          max_lighting=0.2,
                          max_warp=0.2,
                          p_affine=0.75,
                          p_lighting=0.75)  # some tfms
    data = (src.transform(tfms, size=360,
                          resize_method=ResizeMethod.SQUISH).databunch(
                              bs=32, num_workers=0).normalize(imagenet_stats))

    learn = Learner(
        data, SnakeDetector(arch=models.resnet50), loss_func=L1Loss(
        ))  #temp data, we wont be using this, we will be using src_new
    learn.split([learn.model.cnn[:6], learn.model.cnn[6:], learn.model.head])
    state_dict = torch.load(
        'fastai-data/models/snake-detection-model.pth')  #our trained model
    learn.model.load_state_dict(state_dict['model'])
    if not os.path.exists('preprocessed-images'):
        os.makedirs('preprocessed-images')  #directory to store files

    src_new = (ImageList.from_folder(
        path=test_images_path).split_by_rand_pct(0.0).label_from_folder()
               )  # fetch given test images from data/images

    for filename in src_new.items:
        try:
            im = cv2.imread(f"{filename}", cv2.IMREAD_COLOR)
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
            im = cv2.resize(im, (360, 360), interpolation=cv2.INTER_AREA)
            im_height, im_width, _ = im.shape
            orig_im = cv2.imread(f"{filename}", cv2.IMREAD_COLOR)
            orig_im_height, orig_im_width, _ = orig_im.shape
            to_pred = open_image(filename)
            _, _, bbox = learn.predict(to_pred)
            im_original = cv2.imread(f"{filename}", cv2.IMREAD_COLOR)
            im_original = cv2.cvtColor(im_original, cv2.COLOR_BGR2RGB)
            im_original.shape
            im_original_width = im_original.shape[1]
            im_original_height = im_original.shape[0]
            bbox_new = bbox
            bbox_new[0] = bbox_new[0] * im_original_width
            bbox_new[2] = bbox_new[2] * im_original_width
            bbox_new[1] = bbox_new[1] * im_original_height
            bbox_new[3] = bbox_new[3] * im_original_height
            x_min, y_min, x_max, y_max = map(int, bbox_new)
            #cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
            im_original = im_original[
                y_min:y_max, x_min:
                x_max]  #cropping is just slicing opencv uses h,w . which is y,x here
            im_original = cv2.cvtColor(im_original, cv2.COLOR_BGR2RGB)
            filename_str = str(filename)
            to_save = filename_str.replace(
                test_images_path, 'preprocessed-images'
            )  # original file is in  /data/images/*.jpg -> store it at preprocessed-images/*.jpg and use preprocessed-images folder later
            cv2.imwrite(to_save, im_original)
        except:
            pass
    del learn
    gc.collect()

    model_name = 'efficientnet-b5'
    image_size = EfficientNet.get_image_size(model_name)

    model = EfficientNet.from_pretrained(model_name)

    np.random.seed(13)

    src = (ImageList.from_folder(
        path='fastai-data').split_by_rand_pct(0.2).label_from_folder())

    object_detection_results_path = os.getcwd(
    ) + "/preprocessed-images"  #output of previous step is stored here.
    src.add_test_folder(object_detection_results_path)

    tfms = ([rotate(degrees=(-90, 90), p=0.8)], [])

    bs = 8
    data = (src.transform(tfms,
                          size=image_size,
                          resize_method=ResizeMethod.SQUISH).databunch(
                              bs=bs, num_workers=0).normalize(imagenet_stats))
    model.add_module('_fc', nn.Linear(
        2048,
        data.c))  #Replace the final layer of b5 model with number of classes
    loss_func = LabelSmoothingCrossEntropy()  #following EfficientNet paper
    RMSprop = partial(torch.optim.RMSprop)  #Following EfficientNet paper

    learn = Learner(data,
                    model,
                    loss_func=loss_func,
                    opt_func=RMSprop,
                    metrics=[accuracy,
                             FBeta(beta=1, average='macro')])

    learn.split(
        [[learn.model._conv_stem, learn.model._bn0, learn.model._blocks[:19]],
         [learn.model._blocks[19:], learn.model._conv_head],
         [learn.model._bn1, learn.model._fc]])  #for differential learning

    learn.load(
        'b5-seed-13-round-3'
    )  #best single model - 85.2 local cv. Try ensemble later. with 83.1 and 85.2 models

    ########################################################################
    # Generate Predictions
    ########################################################################

    preds, _ = learn.TTA(ds_type=DatasetType.Test)  # Test time augmentation

    probs_seed_13 = np.exp(preds) / np.exp(preds).sum(1)[:, None]

    del learn
    gc.collect()  #garbage collect

    model = EfficientNet.from_pretrained(model_name)

    model.add_module('_fc', nn.Linear(2048, data.c))

    learn = Learner(data,
                    model,
                    loss_func=loss_func,
                    opt_func=RMSprop,
                    metrics=[accuracy,
                             FBeta(beta=1, average='macro')])  #mew learner

    learn.split(
        [[learn.model._conv_stem, learn.model._bn0, learn.model._blocks[:19]],
         [learn.model._blocks[19:], learn.model._conv_head],
         [learn.model._bn1,
          learn.model._fc]])  #not needed, but not takin chances

    learn.load('b5-seed-15-round-7')  #83.6, 83.1 localcv model

    preds, _ = learn.TTA(ds_type=DatasetType.Test)

    probs_seed_15 = np.exp(preds) / np.exp(preds).sum(1)[:, None]

    probs = (probs_seed_13 + probs_seed_15) / 2

    probs_np = probs.numpy()

    df_test = pd.read_csv(
        'given_submission_sample_file.csv', low_memory=False
    )  #use the given sample file to replace probabilites with our model predictions, This way, no need to worry about corrupted images

    df_classes = pd.read_csv('class.csv', low_memory=False)  #class mapping

    data_dict = df_classes.set_index(
        'class_idx')['original_class'].to_dict()  #for look up

    probs_np = probs.numpy()

    df_testfile_mapping = pd.DataFrame(columns=['filename', 'map'])

    df_testfile_mapping['filename'] = df_test['filename']

    for i, row in df_testfile_mapping.iterrows():
        row['map'] = i

    data_dict_filename = df_testfile_mapping.set_index(
        'filename'
    )['map'].to_dict(
    )  # for lookup, returns the index where the filename is found in the given submission file

    i = 0
    for test_file in data.test_ds.items:
        filename = (os.path.basename(test_file))
        map_val = int(data_dict_filename[filename])
        for c in range(0, 45):
            df_test.loc[
                map_val,
                data_dict[int(data.classes[c].split("-")[1])]] = probs_np[i][c]
        i += 1


#around 7 predictions causes assertion error, for now submit them as class-204

    for i, row in df_test.iterrows():
        sum_temp = row[1:46].sum()
        low_limit = 1 - 1e-6
        high_limit = 1 + 1e-6

        if not (sum_temp >= low_limit and sum_temp <= high_limit):
            for c in range(1, 46):
                df_test.iloc[i, c] = 0.
        df_test.loc[i, 'thamnophis_sirtalis'] = 1.

    df_test.to_csv('generated-submission-3.csv', index=False)

    copyfile('generated-submission-3.csv',
             predictions_output_path)  #save to output path

    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success(
        {"predictions_output_path": predictions_output_path})
Ejemplo n.º 7
0
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    import os
    aicrowd_helpers.execution_start()

    os.environ['AICROWD_TEST_IMAGES_PATH'] = 'data/round1'
    os.environ['AICROWD_PREDICTIONS_OUTPUT_PATH'] = 'random_prediction.csv'

    ########################################################################
    # Gather Input and Output paths from environment variables
    ########################################################################
    test_images_path, predictions_output_path = gather_input_output_path()

    ########################################################################
    # Gather Image Names
    ########################################################################
    image_names = gather_image_names(test_images_path)

    ########################################################################
    # Do your magic here to train the model
    ########################################################################

    import numpy as np
    import os
    import glob
    import keras

    from keras.models import load_model
    import efficientnet.keras as efn

    from efficientnet.keras import EfficientNetB5
    model = load_model('model-224-123-16-1.178489-1.705530.hdf5')

    counter2 = 0
    df_data = []
    df_count = []
    lim = 100000
    lim2 = 100000
    IMAGE_folder = '/home/amaury2_pichat/data/snake/train'
    for folder in os.listdir(IMAGE_folder):
        counter = 0
        counter2 = 0
        if len(df_data) < lim:
            for file in os.listdir(IMAGE_folder + '/' + folder):
                if counter2 < lim2:
                    statinfo = os.stat(IMAGE_folder + '/' + folder + '/' +
                                       file)
                    if statinfo.st_size != 0 and counter2 < lim2:
                        df_data.append((folder, file))
                        counter += 1
                        counter2 += 1

    import pandas as pd
    df_data = pd.DataFrame(df_data, columns=['Folder', 'id'])
    # df_data['Folder']='' + df_data['Folder']
    df_data['Classes'] = df_data['Folder']
    df_data['Class'] = df_data['Classes']
    df_data[
        'Path'] = IMAGE_folder + '/' + df_data['Folder'] + '/' + df_data['id']
    df_data.drop(['Classes', 'Folder'], axis=1, inplace=True)

    from keras.preprocessing.image import ImageDataGenerator
    IMAGE_SIZE = 224
    valAug = ImageDataGenerator(rescale=1 / 255.0)
    pred_gen = valAug.flow_from_dataframe(df_data,
                                          x_col="Path",
                                          y_col="Class",
                                          shuffle=False,
                                          target_size=(IMAGE_SIZE, IMAGE_SIZE),
                                          batch_size=1,
                                          class_mode='categorical')

    LINES = []

    with open('data/class_idx_mapping.csv') as f:
        classes = ['filename']
        for line in f.readlines()[1:]:
            class_name = line.split(",")[0]
            classes.append(class_name)

    LINES.append(','.join(classes))

    predictions = model.predict_generator(pred_gen,
                                          verbose=1,
                                          steps=len(pred_gen.filenames))
    compteur = 0
    for _file_path in pred_gen.filenames:

        file_and_pred = _file_path[_file_path.rfind('\\') + 2:]
        LINES.append(_file_path[_file_path.rfind('\\') + 2:] + "," +
                     ",".join(str(x) for x in predictions[compteur]))
        compteur += 1

    #images_path = AICROWD_TEST_IMAGES_PATH + '/*.jpg'
    #for _file_path in glob.glob(images_path):
    #	probs = softmax(np.random.rand(45))
    #	probs = list(map(str, probs))
    #	LINES.append(",".join([os.path.basename(_file_path)] + probs))
    AICROWD_PREDICTIONS_OUTPUT_PATH = os.environ[
        'AICROWD_PREDICTIONS_OUTPUT_PATH']
    fp = open(AICROWD_PREDICTIONS_OUTPUT_PATH, "w")
    fp.write("\n".join(LINES))
    fp.close()

    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success(
        {"predictions_output_path": predictions_output_path})
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()

    ########################################################################
    # Gather Input and Output paths from environment variables
    ########################################################################
    test_images_path, predictions_output_path = gather_input_output_path()

    ########################################################################
    # Gather Image Names
    ########################################################################
    image_names = gather_image_names(test_images_path)

    ########################################################################
    # Do your magic here to train the model
    ########################################################################
    classes = get_snake_classes()

    def softmax(x):
        """Compute softmax values for each sets of scores in x."""
        e_x = np.exp(x - np.max(x))
        return e_x / e_x.sum(axis=0)

    ########################################################################
    # Generate Predictions
    ########################################################################
    LINES = []
    LINES.append(','.join(['filename'] + classes))
    predictions = []
    for image_name in image_names:
        probs = softmax(np.random.rand(45))
        probs = list(map(str, probs))
        LINES.append(",".join([image_name] + probs))

        ########################################################################
        # Register Prediction
        #
        # Note, this prediction register is not a requirement. It is used to
        # provide you feedback of how far are you in the overall evaluation.
        # In the absence of it, the evaluation will still work, but you
        # will see progress of the evaluation as 0 until it is complete
        #
        # Here you simply announce that you completed processing a set of
        # image_names
        ########################################################################
        aicrowd_helpers.execution_progress({
            "image_names" : [image_name]
        })


    # Write output
    fp = open(predictions_output_path, "w")
    fp.write("\n".join(LINES))
    fp.close()
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success({
        "predictions_output_path" : predictions_output_path
    })
Ejemplo n.º 9
0
def run():
    ########################################################################
    # Register Prediction Start
    ########################################################################
    aicrowd_helpers.execution_start()


    ########################################################################
    # Load Tests Meta Data file
    #       and iterate over all its rows
    #
    #       Each Row contains the following information : 
    #
    #       - `index` : Unique ID of each record
    #       - `intclinicaltrialid` : description to be added
    #       - `intdesignkeywordid` : description to be added
    #       - `strdesignkeyword` : description to be added
    #       - .... and so on 
    ########################################################################    

    OUTPUT_LINES = []
    HEADER = ['index'] + VALID_CLASSES
    OUTPUT_LINES.append(",".join(HEADER))

    tests_df = pd.read_csv(AICROWD_TEST_DATA_PATH, index_col=0)

    for index_id, row in tqdm.tqdm(tests_df.iterrows()):
        index_id = str(index_id)
        intclinicaltrialid = row['intclinicaltrialid']
        intdesignkeywordid = row['intdesignkeywordid']
        ##
        ## ... and so on 
        ## TODO : Provide example re

        predictions = get_random_prediction(index_id)
        PREDICTION_LINE = [index_id] + [str(x) for x in predictions.tolist()]
        OUTPUT_LINES.append(",".join(PREDICTION_LINE))
        
        ########################################################################
        # Register Prediction
        #
        # Note, this prediction register is not a requirement. It is used to
        # provide you feedback of how far are you in the overall evaluation.
        # In the absence of it, the evaluation will still work, but you
        # will see progress of the evaluation as 0 until it is complete
        #
        # Here you simply announce that you completed processing a set of
        # index_ids
        ########################################################################
        aicrowd_helpers.execution_progress({
            "index_ids" : [index_id] ### NOTE : This is an array of index_ids 
        })


    # Write output
    fp = open(AICROWD_PREDICTIONS_OUTPUT_PATH, "w")
    fp.write("\n".join(OUTPUT_LINES))
    fp.close()
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success({
        "predictions_output_path" : AICROWD_PREDICTIONS_OUTPUT_PATH
    })
Ejemplo n.º 10
0
        # In the absence of it, the evaluation will still work, but you
        # will see progress of the evaluation as 0 until it is complete
        #
        # Here you simply announce that you completed processing a set of
        # image_names
        ########################################################################
        aicrowd_helpers.execution_progress({
            "image_names" : [image_name]
        })


    # Write output
    fp = open(predictions_output_path, "w")
    fp.write("\n".join(LINES))
    fp.close()
    ########################################################################
    # Register Prediction Complete
    ########################################################################
    aicrowd_helpers.execution_success({
        "predictions_output_path" : predictions_output_path
    })


if __name__ == "__main__":
    try:
        run()
    except Exception as e:
        error = traceback.format_exc()
        print(error)
        aicrowd_helpers.execution_error(error)