def saveModels(self): torch.save( self.generator, util.fcnt(self.checkpoints_dir, "voxel_flow_generator", "pth")) torch.save( self.discriminator, util.fcnt(self.checkpoints_dir, "voxel_flow_discriminator", "pth")) print("done save models")
def saveModels(self): name = util.fcnt(self.sheckpoints_dir, "pix2pix_generator", "pth") torch.save(self.generator, name) print("{} is saved".format(name)) name = util.fcnt(self.sheckpoints_dir, "pix2pix_discriminator", "pth") torch.save(self.discriminator, name) print("{} is saved".format(name)) # torch.save(self.discriminator, util.fcnt(self.sheckpoints_dir, "pix2pix_discriminator", "pth")) print("done save models")
def save_models(self): name = util.fcnt(self.checkpoints_dir, "annotation_controller_generator", "pth") torch.save(self.generator, name) print("{} is saved".format(name)) name = util.fcnt(self.checkpoints_dir, "annotation_controller_discriminator", "pth") torch.save(self.discriminator, name) print("{} is saved".format(name)) # torch.save(self.discriminator, util.fcnt(self.checkpoints_dir, "annotation controller_discriminator", "pth")) print("done save models")
def _saveModel(self, model, file_name, is_fcnt=True): model_name = str(model.__class__).split("'")[1] if model_name.split(".")[-1] == "BaseSequential": self._saveModel(list(model)[0], file_name) else: if is_fcnt: path = util.fcnt(self.sheckpoints_dir, file_name, "pth") else: path = file_name state_dict = model.state_dict() state_dict['model_name'] = model_name state_dict['setting'] = self.setting torch.save(state_dict, path) print("{} is saved".format(path))
def dump(self, image=None): img = I.fromarray(image[...,::-1]) img.save(util.fcnt(dir=self.dump_path, fname = "image", ext=self.ext))