Ejemplo n.º 1
0
    def test_bias_update_to_dense(self):
        """
        test bias correction on matmul layer
        :return:
        """
        tf.compat.v1.reset_default_graph()

        inputs = tf.keras.Input(shape=(32, 32, 3,))
        x = tf.keras.layers.Flatten()(inputs)
        dense = tf.keras.layers.Dense(2, use_bias=False, activation=tf.nn.softmax, name="single_residual")(x)
        # pylint: disable=no-member
        _ = tf.nn.relu(dense)

        init = tf.compat.v1.global_variables_initializer()
        sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph())
        sess.run(init)

        dense_op = sess.graph.get_operation_by_name('single_residual/MatMul')
        self.assertTrue(BiasUtils.is_bias_none(dense_op))

        new_sess = BiasUtils.initialize_model_with_bias(sess, ['input_1'], ['Relu'])

        dense_op = new_sess.graph.get_operation_by_name('single_residual/MatMul')
        self.assertTrue(not BiasUtils.is_bias_none(dense_op))
        new_sess.close()
Ejemplo n.º 2
0
def bias_correction_single_layer_empirical(dataset: tf.data.Dataset):
    """ perform bias correction on one layer """

    # load a model
    tf.keras.backend.clear_session()
    _ = ResNet50(weights='imagenet', input_shape=(224, 224, 3))
    sess = tf.compat.v1.keras.backend.get_session()

    # input parameters for bias correction
    # populate required parameters in two data types QuantParams and BiasCorrectParams

    quant_params = QuantParams(quant_mode='tf_enhanced',
                               round_mode='nearest',
                               use_cuda=True,
                               ops_to_ignore=None)

    bias_correction_params = BiasCorrectionParams(
        batch_size=1,
        num_quant_samples=10,
        num_bias_correct_samples=10,
        input_op_names=['input_1'],
        output_op_names=['fc1000/Softmax'])

    with sess.as_default():
        # initialize model with zero bias
        sess = BiasUtils.initialize_model_with_bias(
            sess, bias_correction_params.input_op_names,
            bias_correction_params.output_op_names)

        # pick a layer for bias correction
        example_conv_layer = sess.graph.get_operation_by_name(
            'res2a_branch2a/Conv2D')

        # invoke bias correction of one layer
        BiasCorrection.bias_correction_per_layer(
            reference_model=sess,
            corrected_model=sess,
            bias_correct_params=bias_correction_params,
            layer_name_to_be_corrected=example_conv_layer.name,
            quant_params=quant_params,
            data_set=dataset)
    sess.close()
Ejemplo n.º 3
0
def bias_correction_single_layer_analytical():
    """ perform analytical bias correction on one layer """

    # load a model
    tf.keras.backend.clear_session()
    _ = ResNet50(weights='imagenet', input_shape=(224, 224, 3))
    sess = tf.compat.v1.keras.backend.get_session()

    # input parameters for bias correction
    # populate required parameters in two data types QuantParams and BiasCorrectParams

    quant_params = QuantParams(quant_mode='tf_enhanced',
                               round_mode='nearest',
                               use_cuda=True,
                               ops_to_ignore=None)

    with sess.as_default():
        # initialize model with zero bias
        sess = BiasUtils.initialize_model_with_bias(sess, ['input_1'],
                                                    ['fc1000/Softmax'])

        # pick a layer for bias correction
        example_conv_layer = sess.graph.get_operation_by_name(
            'res2a_branch2a/Conv2D')

        # get candidate conv bns in the model
        convs_bn_activation_info_dict = BiasCorrection.find_all_convs_bn_with_activation(
            sess, ['input_1'], ['fc1000/Softmax'])

        # make sure to pick example_conv_layer that has a bn op associated with it
        if example_conv_layer in convs_bn_activation_info_dict.keys():

            preceding_bn_layer_info = convs_bn_activation_info_dict[
                example_conv_layer]

            # invoke analytical bias correction on this layer
            BiasCorrection.analytical_bias_correction_per_layer(
                sess, example_conv_layer, preceding_bn_layer_info,
                quant_params)
    sess.close()
Ejemplo n.º 4
0
    def test_initialize_with_bias_with_detached_ops(self):
        """ Test that initialize with bias only affects valid ops """
        tf.compat.v1.reset_default_graph()
        sess = tf.compat.v1.Session()

        inputs = tf.keras.Input(shape=(32, 32, 3,))
        conv1 = tf.keras.layers.Conv2D(32, (3, 3), use_bias=False)(inputs)
        _ = tf.keras.layers.Conv2D(16, (2, 2), activation=tf.nn.tanh, use_bias=False)(conv1)
        _ = tf.keras.layers.Conv2D(8, (2, 2), activation=tf.nn.tanh)(conv1)
        graph_editor.detach_inputs(sess.graph.get_operation_by_name('conv2d_1/Conv2D'))
        init = tf.compat.v1.global_variables_initializer()
        sess.run(init)

        # Check that outputs of conv2d and conv2d_1 have no biases
        self.assertTrue(sess.graph.get_operation_by_name('conv2d/Conv2D').outputs[0].consumers()[0].type != 'BiasAdd')
        self.assertTrue(sess.graph.get_operation_by_name('conv2d_1/Conv2D').outputs[0].consumers()[0].type != 'BiasAdd')

        sess = BiasUtils.initialize_model_with_bias(sess, ['input_1'], ['conv2d_2/BiasAdd'])

        # Check that conv2d has a bias inserted but not conv2d_1
        self.assertTrue(sess.graph.get_operation_by_name('conv2d/Conv2D').outputs[0].consumers()[0].type == 'BiasAdd')
        self.assertTrue(sess.graph.get_operation_by_name('conv2d_1/Conv2D').outputs[0].consumers()[0].type != 'BiasAdd')
Ejemplo n.º 5
0
    def correct_bias(reference_model: tf.compat.v1.Session,
                     bias_correct_params: BiasCorrectionParams,
                     quant_params: QuantParams,
                     data_set: tf.data.Dataset,
                     conv_bn_dict: Union[Dict[tf.Operation, ConvBnInfoType],
                                         None] = None,
                     perform_only_empirical_bias_corr: bool = True):
        """
         Top level function for bias correction

        :param reference_model: active tf.compat.v1.Session for the model to be corrected.
        :param bias_correct_params: input params for bias correction
        :param quant_params: QuantParams type with params for quantization simulation for bias correction.
        :param data_set: input data set
        :param conv_bn_dict: Dict of conv and bn with activation info. If None, the function looks for it.
                             This can be obtained on the model with bns and convs using
                             BiasCorrection.find_all_convs_bn_with_activation() api.
        :param perform_only_empirical_bias_corr: a flag to indicate only empirical bias correction is to be performed.
        :return: updated session with corrected bias for given ops

        """

        # one time initialization of all layers with bias param
        reference_model = BiasUtils.initialize_model_with_bias(
            reference_model, bias_correct_params.input_op_names,
            bias_correct_params.output_op_names)

        # Create a copy of the model as reference model
        corrected_model = save_and_load_graph('./temp_meta_path',
                                              reference_model)

        # get all ordered convs/ linears and skip gradient ops
        ordered_conv_linears = get_ordered_conv_linears(
            reference_model, bias_correct_params.input_op_names,
            bias_correct_params.output_op_names)

        # Get conv2D, depthwise with preceding BN ops info for analytical bias correction
        # if user has not passed any dictionary
        if conv_bn_dict is None:
            convs_bn_activation_info_dict = BiasCorrection.find_all_convs_bn_with_activation(
                reference_model, bias_correct_params.input_op_names,
                bias_correct_params.output_op_names)
        else:
            convs_bn_activation_info_dict = BiasCorrection.refresh_op_ref(
                reference_model, conv_bn_dict)

        # Perform analytical bias correction for first conv layer
        # we always perform empirical bias correction for linear layers
        if ordered_conv_linears:
            if not perform_only_empirical_bias_corr and ordered_conv_linears[
                    0].type not in ['MatMul']:
                first_conv = ordered_conv_linears.pop(0)
                BiasCorrection.analytical_bias_correction_per_layer(
                    corrected_model,
                    first_conv,
                    None,
                    quant_params,
                    is_first_conv=True)

        # for each candidate layer in an ordered list of conv/lieanr ops
        # find the corresponding bn and activation info
        for layer in ordered_conv_linears:

            # if this layer is in selected patterns of convs with preceding BN op and
            # if empirical flag is false
            # perform analytical Bias correction
            if layer in convs_bn_activation_info_dict.keys(
            ) and not perform_only_empirical_bias_corr:

                preceding_bn_layer_info = convs_bn_activation_info_dict[layer]

                BiasCorrection.analytical_bias_correction_per_layer(
                    corrected_model, layer, preceding_bn_layer_info,
                    quant_params)
            else:
                # stand-alone convs/ linears or when perform_only_empirical_bias_corr is set to True
                # perform empirical bias correction
                BiasCorrection.bias_correction_per_layer(
                    reference_model, corrected_model, bias_correct_params,
                    layer.name, quant_params, data_set)
        logger.info('Completed bias correction')

        return corrected_model