def main(**kwargs): args = argparse.Namespace(**kwargs) if 'save' in args: if os.path.exists(args.save): raise RuntimeError('Output file "{}" already exists.'.format( args.save)) if args.seed is not None: pyro.set_rng_seed(args.seed) X, true_counts = load_data() X_size = X.size(0) if args.cuda: X = X.cuda() # Build a function to compute z_pres prior probabilities. if args.z_pres_prior_raw: def base_z_pres_prior_p(t): return args.z_pres_prior else: base_z_pres_prior_p = make_prior(args.z_pres_prior) # Wrap with logic to apply any annealing. def z_pres_prior_p(opt_step, time_step): p = base_z_pres_prior_p(time_step) if args.anneal_prior == 'none': return p else: decay = dict(lin=lin_decay, exp=exp_decay)[args.anneal_prior] return decay(p, args.anneal_prior_to, args.anneal_prior_begin, args.anneal_prior_duration, opt_step) model_arg_keys = [ 'window_size', 'rnn_hidden_size', 'decoder_output_bias', 'decoder_output_use_sigmoid', 'baseline_scalar', 'encoder_net', 'decoder_net', 'predict_net', 'embed_net', 'bl_predict_net', 'non_linearity', 'pos_prior_mean', 'pos_prior_sd', 'scale_prior_mean', 'scale_prior_sd' ] model_args = { key: getattr(args, key) for key in model_arg_keys if key in args } air = AIR(num_steps=args.model_steps, x_size=50, use_masking=not args.no_masking, use_baselines=not args.no_baselines, z_what_size=args.encoder_latent_size, use_cuda=args.cuda, **model_args) if args.verbose: print(air) print(args) if 'load' in args: print('Loading parameters...') air.load_state_dict(torch.load(args.load)) vis = visdom.Visdom(env=args.visdom_env) # Viz sample from prior. if args.viz: z, x = air.prior(5, z_pres_prior_p=partial(z_pres_prior_p, 0)) vis.images(draw_many(x, tensor_to_objs(latents_to_tensor(z)))) def per_param_optim_args(module_name, param_name, tags): lr = args.baseline_learning_rate if 'baseline' in tags else args.learning_rate return {'lr': lr} svi = SVI(air.model, air.guide, optim.Adam(per_param_optim_args), loss='ELBO', trace_graph=True) # Do inference. t0 = time.time() examples_to_viz = X[5:10] for i in range(1, args.num_steps + 1): loss = svi.step(X, args.batch_size, z_pres_prior_p=partial(z_pres_prior_p, i)) if args.progress_every > 0 and i % args.progress_every == 0: print('i={}, epochs={:.2f}, elapsed={:.2f}, elbo={:.2f}'.format( i, (i * args.batch_size) / X_size, (time.time() - t0) / 3600, loss / X_size)) if args.viz and i % args.viz_every == 0: trace = poutine.trace(air.guide).get_trace(examples_to_viz, None) z, recons = poutine.replay(air.prior, trace)(examples_to_viz.size(0)) z_wheres = tensor_to_objs(latents_to_tensor(z)) # Show data with inferred objection positions. vis.images(draw_many(examples_to_viz, z_wheres)) # Show reconstructions of data. vis.images(draw_many(recons, z_wheres)) if args.eval_every > 0 and i % args.eval_every == 0: # Measure accuracy on subset of training data. acc, counts, error_z, error_ix = count_accuracy( X, true_counts, air, 1000) print('i={}, accuracy={}, counts={}'.format( i, acc, counts.numpy().tolist())) if args.viz and error_ix.size(0) > 0: vis.images(draw_many(X[error_ix[0:5]], tensor_to_objs(error_z[0:5])), opts=dict(caption='errors ({})'.format(i))) if 'save' in args and i % args.save_every == 0: print('Saving parameters...') torch.save(air.state_dict(), args.save)
def main(**kwargs): args = argparse.Namespace(**kwargs) if 'save' in args: if os.path.exists(args.save): raise RuntimeError('Output file "{}" already exists.'.format(args.save)) if args.seed is not None: pyro.set_rng_seed(args.seed) X, true_counts = load_data() X_size = X.size(0) if args.cuda: X = X.cuda() # Build a function to compute z_pres prior probabilities. if args.z_pres_prior_raw: def base_z_pres_prior_p(t): return args.z_pres_prior else: base_z_pres_prior_p = make_prior(args.z_pres_prior) # Wrap with logic to apply any annealing. def z_pres_prior_p(opt_step, time_step): p = base_z_pres_prior_p(time_step) if args.anneal_prior == 'none': return p else: decay = dict(lin=lin_decay, exp=exp_decay)[args.anneal_prior] return decay(p, args.anneal_prior_to, args.anneal_prior_begin, args.anneal_prior_duration, opt_step) model_arg_keys = ['window_size', 'rnn_hidden_size', 'decoder_output_bias', 'decoder_output_use_sigmoid', 'baseline_scalar', 'encoder_net', 'decoder_net', 'predict_net', 'embed_net', 'bl_predict_net', 'non_linearity', 'pos_prior_mean', 'pos_prior_sd', 'scale_prior_mean', 'scale_prior_sd'] model_args = {key: getattr(args, key) for key in model_arg_keys if key in args} air = AIR( num_steps=args.model_steps, x_size=50, use_masking=not args.no_masking, use_baselines=not args.no_baselines, z_what_size=args.encoder_latent_size, use_cuda=args.cuda, **model_args ) if args.verbose: print(air) print(args) if 'load' in args: print('Loading parameters...') air.load_state_dict(torch.load(args.load)) vis = visdom.Visdom(env=args.visdom_env) # Viz sample from prior. if args.viz: z, x = air.prior(5, z_pres_prior_p=partial(z_pres_prior_p, 0)) vis.images(draw_many(x, tensor_to_objs(latents_to_tensor(z)))) def per_param_optim_args(module_name, param_name): lr = args.baseline_learning_rate if 'bl_' in param_name else args.learning_rate return {'lr': lr} svi = SVI(air.model, air.guide, optim.Adam(per_param_optim_args), loss=TraceGraph_ELBO()) # Do inference. t0 = time.time() examples_to_viz = X[5:10] for i in range(1, args.num_steps + 1): loss = svi.step(X, args.batch_size, z_pres_prior_p=partial(z_pres_prior_p, i)) if args.progress_every > 0 and i % args.progress_every == 0: print('i={}, epochs={:.2f}, elapsed={:.2f}, elbo={:.2f}'.format( i, (i * args.batch_size) / X_size, (time.time() - t0) / 3600, loss / X_size)) if args.viz and i % args.viz_every == 0: trace = poutine.trace(air.guide).get_trace(examples_to_viz, None) z, recons = poutine.replay(air.prior, trace=trace)(examples_to_viz.size(0)) z_wheres = tensor_to_objs(latents_to_tensor(z)) # Show data with inferred objection positions. vis.images(draw_many(examples_to_viz, z_wheres)) # Show reconstructions of data. vis.images(draw_many(recons, z_wheres)) if args.eval_every > 0 and i % args.eval_every == 0: # Measure accuracy on subset of training data. acc, counts, error_z, error_ix = count_accuracy(X, true_counts, air, 1000) print('i={}, accuracy={}, counts={}'.format(i, acc, counts.numpy().tolist())) if args.viz and error_ix.size(0) > 0: vis.images(draw_many(X[error_ix[0:5]], tensor_to_objs(error_z[0:5])), opts=dict(caption='errors ({})'.format(i))) if 'save' in args and i % args.save_every == 0: print('Saving parameters...') torch.save(air.state_dict(), args.save)
z_what_size=args.encoder_latent_size, use_cuda=args.cuda, **model_args) if args.verbose: print(air) print(args) if 'load' in args: print('Loading parameters...') air.load_state_dict(torch.load(args.load)) vis = visdom.Visdom(env=args.visdom_env) # Viz sample from prior. if args.viz: z, x = air.prior(5, z_pres_prior_p=partial(z_pres_prior_p, 0)) vis.images(draw_many(x, post_process_latents(z))) t0 = time.time() examples_to_viz = X[9:14] # Do inference. def per_param_optim_args(module_name, param_name, tags): lr = 1e-3 if 'baseline' in tags else 1e-4 return {'lr': lr} svi = SVI(air.model, air.guide, optim.Adam(per_param_optim_args),
use_cuda=args.cuda, **model_args ) if args.verbose: print(air) print(args) if 'load' in args: print('Loading parameters...') air.load_state_dict(torch.load(args.load)) vis = visdom.Visdom(env=args.visdom_env) # Viz sample from prior. if args.viz: z, x = air.prior(5, z_pres_prior_p=partial(z_pres_prior_p, 0)) vis.images(draw_many(x, post_process_latents(z))) t0 = time.time() examples_to_viz = X[9:14] # Do inference. def per_param_optim_args(module_name, param_name, tags): lr = 1e-3 if 'baseline' in tags else 1e-4 return {'lr': lr} svi = SVI(air.model, air.guide, optim.Adam(per_param_optim_args), loss='ELBO',